SOINFINITE | &
MOSAIC ~*

April 11

ECE1778H | MOSAIC

Final Report

* Anthony Soung Yee (995092741) - Apper
* M. Hamed Zahedi (992255812) - Programmer

Word Count = 2441 Words
Penalty =0

Apper Word Count = 335 Words
Penalty =0

1 Introduction

Our project is a mobile device Application (App) for visualizing and interactively exploring a large set of
images, specified by the user. We employ an image processing technique called “image mosaicing”,
where a “primary” image is constructed from a large set of “tile” images. More specifically, we use an
algorithm for creating an image collage or mosaic, where subsections (or even individual pixels) of a
primary image are composed of other “tile” images, as shown in Figure 1.

Primary Image Tile Images Mosaic

Figure 1 - Diagram illustrating the formation of an image mosaic from a primary and set of tile images

This approach is often used in multimedia applications, as a means of displaying a large number of
images simultaneously, presented in a structured manner in the form of the primary image. This
contrasts with the layout of many Web sites such as Google Images, which show large image collections
(i.e. search results) in a grid form, but whose ensemble has no overall structure. With the advent of cell
phone photography, we intend to bring this mosaicing functionality to a mobile device, to provide a fun

and entertaining way to display large sets of photographs that users may have on their devices.

2 Overall design

The project requirement was to develop an application allowing users to generate an artistic mosaic
representation of a primary image given a set of tile images — and further allow the user to “explore” the
generated mosaic. A governing requirement was to reduce time to initial functioning prototype and
allow incremental refinements. As such the application was designed to have the minimum working
feature set for each functional block— while allowing for additional — non-critical functionality to be
added later. A block diagram of major building blocks is depicted in Figure 2, below.

Resource Manager
(ImageUtils.java)

N

File 10

Image Map Generator

Color Map Generator

N

Tile Database

/ﬁ(

Mosaicing Algorithm

‘ Async Thread
()

Screen Renderer (InfiniteMosaicView.java)

| &
‘t/ CreateColorMap()

User Navigation
(ImageZoomView.java)

bl Infinitemosaic.navigation

AspectQuotient.java

. Async Thread

o
L&

&
Y Y

Dynamics.java
DynamicZoomControl.java

/ Primary Image | Tile Image Selection

(InfiniteMosaic.java)

\ LongPressZoomlListener.java
ZoomState.java

Primary Image Selection

(CoverFlow.java) Builder

Statistics — Histogram

(XYChartBuilder.java)

Achartengine-0.6.0.jar

Tile Image Manager
(ManageFolders.java)

"4
\

~Cﬂ\rseTilelmageThread()

Tile Folder Browser
(Gallery Widget)

- v
+

CalculateMedianColor()

o

Figure 2 - Block Diagram of high level layout showing major blocks

2.1 Activity Flow and layout

The activity screens that solicit user input and lead the user towards generating a mosaic are outlined in

Figure 3 below. The layout and flow was developed specifically with Human Factors in mind. Buttons

and graphics were designed in Adobe Photoshop to be pixel accurate to a display resolution of 320x480.
Significant additional programming and testing effort would be required to create such a comprehensive
layout that is portable across all screen resolutions.

Main.java | | Mainmi J]

P S—

!

(Tutorialjava | [[InfiniteMosaic.java | | Startxml J] [[ManageFoldersjava | | Managefolers.xmi j]

<«

l l | FolderListviewjava |
DatabaselListView.java XYChartBuilder.java InfiniteMosaicView.java " "

‘ ViewFolder_list.xml ‘

l Viewdatabase_listxml | ‘ XY_Chart.xml| J { Showmosaic.xml J I Folder_listview.xml J

| Database_listview.xml J

Figure 3 - Activity Flow Diagram for iMosaic showing layout elements

2.2 Algorithm

Two major algorithms are implemented in this project — the median color algorithm and the mosaicing
algorithm. Given a bitmap in RGB colour space, the median color algorithm determines a single
representative color for all the pixels in that bitmap. The algorithm is implemented in 2 versions outlined
in Figure 4 below. In version 1, the algorithm is used to generate a colour map by downsampling a
primary image. In version 2, the algorithm is used to determine a single representative colour from an
entire bitmap. Both are implemented in Asyncronous threads on Android.

Source Primary Image Bitmap Populated Color Map Array

<Async Task >

Median
Color
Algorithm

100 pixel (10x10 pixel area) colours = 1 median pixel colour

o Source Tile Image Bitmap Single representative RGBvalue
<Async Task >

Median
Color

Algorithm

Figure 4 - Median Colour Algorithm implementations in iMosaic

The second algorithm used in iMosaic app, is the mosaic generation algorithm. This algorithm takes as
input, a color map array (as shown in Figure 4) and a list of tile images. For each colour in the colour map
array, the mosaic generation algorithm determines the best fit “tile” image to represent that colour. The
imagelnfo class is used as the backing data structure for this operation. The X,Y co-ordinates, and the
path file path are stored for each matching file. This data structure is then used to generate the mosaic
bitmap.

2.3 Database Generation and loading (.MZK files)

When parsing a folder of image tiles, iMosaic automatically generates a database containing the results
of the parsing operation. Each tile database represents a folder on the SD card. The name of the
database is the name of the image folder with .MZK extension. An MZK file is an ASCII file containing the
path to a file and its associated median colour. The generation and storage of mosaic databases is
depicted in Figure 5 below. Since the database persists between sessions, the user is not required to
color information this information every time. imageUtils class contains the necessary file i/o
functionality to load and store this database as required. Currently iMosaic requires all tile image folders

”

to be located at /mnt/sdcard/ and have the “pics_” prefix to be recognized as a valid image folder by

iMosaic app.

l /mnt/sdcard/
|

l] Pics_<folder_name_1>/ -

20 Jpg
Fi21)0g ™~
e2ipg FRePan 2

r Async Thread
'] Pics_<folder_name_2>/ > p J

ParseTilelmageThread()
pepye .
Fu21)pg
Fi22)pg

File 10
imageUtils.loadTileDatabase()
| Pics_<folder_name_1>.m# | imageUtils.storeTileDatabase()
Pu:s <folder_name_2-.mz

Figure 5 - Folder Structure used by iMosaic App - also showing Database generation thread

2.4 Performance

Figure 6 shows time versus number of images for tile database generation. As expected, the trend is
linear because every pixel in every image requires processing. Time is directly proportional to the total
number of pixels being processed. I/O latency (SD card access) was not characterized.

Time vs. Number of images (160x120 px) for Database Generation
30 L L L L

25 - -

20 - i

151 i

Time (secs)

101 i

r r r
0 50 100 150 200 250
Number of images

Figure 6 - Time Versus Number of tile images for Database generation as measured on LG Optimus 1 P500H @ 700MHz

Figure 7 shows the time versus number of images for mosaic generation. It also indicates the
progression of quality of the mosaic with increasing image tiles. This is also a brute-force algorithm with
no performance optimizations and no post-processing. A variety of modifications are available for
increasing the performance of the mosaic generation. This algorithm is a worthwhile candidate for
future improvement.

Time vs. Number of tile images for Mosaic Generation (Primary image size 640x480 px)
30 .- -

25 .

20 |- .

Time (secs)

15|.

10 .

5 s £ r L L s L
100 150 200 250 300 35 400 450 500
Number of tile images

Original image Mosaic w/167 images Mosaic w/283 images Mosaic w/466 images
Figure 7 - Time Versus Number of tile images for mosaic generation as measured on LG Optimus 1 P500H @ 700MHz

For a typical 640x480 image using 466 image tiles, mosaic generation took 19 seconds. Using a 10x10 tile
width, this translates to (64x48 primary image tiles) X (466 tile images) / 19 seconds =~75000 image
comparison operations per seconds on the LG Optimus 1 (P500H) @ 700Mhz

The algorithm is as follows:

min {d = A%+ B2+ C2 }

Where,

A = Ry — R; Difference between RED values of Primary and image (t) and tile “pixel” (i)

B = G; — G; Difference between GREEN values of Primary and image (t) and tile “pixel” (i)
C = B, — B; Difference between BLUE values of Primary and image (t) and tile “pixel” (i)
d = absolute difference between tile colour, i and primary image colour, t

3 Functionality

The following section presents the functionality of the App, through the User Interface (Ul).

COINFINITE | ®,
MOSAIC ~*

Create A Mosaic

Manage Mosaic Tiles

Tutorial

Main screen

This screen provides the user with three options,
representing three major functions of the App. First, the
‘Create mosaic’ button brings the user to another screen to
create an image mosaic. Second, the ‘Manage Databases’
button brings the user to another screen for adding and
deleting databases of tile images, in order to create image
mosaics. Third, the Tutorial button brings up a dialog to
provide a set of instructions on the functions of the App.
(This function was not completed due to time constraints)

00

(touch to select)
O

g ADD CXISTING DATARASC

Using 231 Image Tiles

SELECT TILE INAGES BIEH

i “_\]’U‘*“ A& '

STATISTICS T

GENCRATE!

DO Frimary Image

’})Tile Images

Create Mosaic screen

This screen outlines a series of steps needed to create a
mosaic. Near the top of the screen, the user selects the
Primary image using a Gallery widget, by scrolling left and
right through the images. These primary images are found in
the ‘primary_image’ folder on the SD card.

Next, the user selects the sets of tile images from which to
construct the mosaic, using a custom list view. An indicator
displays the number of images that are currently selected.
Finally, the ‘Generate!’ button initiates the call to create the
mosaic.

Finally, a histogram view shows the distribution of red,
green, and blue pixels in the Primary image, as well as the set
of Tile images selected.

Current limitation: File size. In order to shorten the
processing time in generating the mosaic, only small file sizes
are supported (approximately 640X480). Also certain
primary images crash the App, for unknown reasons. A set of
working primary images are provided.

[N TILE FOLDER BROKSER

. N we
”

”,

ran160x120

@ Parsing Image Tiles

21 of 183 parsed

(U —

10% 10/100

Manage Databases screen

This screen allows the user to select folders of images the SD
card to create databases “tile sets”. These tile sets are used
to create image mosaics. The user presses the ‘Open folder’
button to bring up a custom listview showing the available
folders of images (folders with ‘pics_*’ as the name). The
Gallery widget below displays the images from the folder, in
order to be reviewed by the user. The user presses the
‘Generate DB’ button to start processing the images,
packaging it into a .mzk file. A dialog popup displays the
progress of creating the database.

Current limitation: File size. Only small tile images are
supported, in order to shorten the processing time in
creating a database. Images of size 160x120 are supplied.

@ Please wait...

Mosaic display and navigation screen

Once the mosaic is generated and displayed on the screen,
the user is able to pan and zoom using one finger gestures.
To pan, simply drag the image mosaic in any direction. To
zoom, hold press on any area of the screen for one second.
The user receives vibration feedback, and the user can now
gesture up to zoom in, and gesture down to zoom out. The
navigation functionality also includes “elasticity” into the
panning motion.

10

4 Lessons learned

This section highlights some important lessons learned over the course of the semester. Also included
are remarks on what would have been done differently if this project would have been restarted.

4.1 Project management and communication

The group members learned a great deal about the importance of communication in delivering a
project, from conception to completion. Given the time constraints, learning curve and scheduling
issues, it was essential to be constantly communications our ideas to each other. One example of this
occurred early on in the project, where it was found that the group members had different
interpretations of the term mosaicing. As it turns out, there are two types of mosaicing algorithms,
which were miscommunicated. However, once the problem was solved, we became aware of each
other’s use of vocabulary to describe different aspects of the project.

4.2 Display design

The Apper’s field of research is in Human factors, which deals with human-machine interfaces. Although
most Human factors practitioners are familiar with issues related to design principles for mobile devices,
it was worthwhile getting hands-on experience in designing the user interface (Ul). The Apper also had
the opportunity to code the Ul layouts in XML. This was very helpful in understanding some of the
design choices that Android App developers must make when programming Apps. As well, it was
interesting for the Apper to have to design for such a small screen size, which has implications for the
layout of the App’s screens.

4.3 Considerations for group size

Looking back at the amount of work expected to be accomplished during the time frame of the course, it
may have been worthwhile to recruit a third group member. This would have had the added benefit of

11

better optimised code, more functionality, etc. However, the group also learned about the importance
of having passionate and dedicated group members. Given the time constraints and logistics of meeting
throughout the semester, there were several opportunities for the collective efforts of the group to
break down. However, because the group members shared mutual interests in the project succeeding,
trust, as well as complementary skills, the working environment was amicable and productive.

5 Group member contributions

5.1 Hamed Zahedi (Programmer)

Hamed was responsible for the entirety of the software architecture and implementation. Hamed
worked closely with Anthony on initial brainstorming of project ideas and directions, determining
feasibility given the timeline, prioritizing and filtering the feature set to meet the project goals.
Significant initial effort was spent researching initial feasibility by browsing online resources and training
videos to minimize potential pitfalls during implementation.

During the collaboration phase, Individual high level project requirements (ability to navigate the
mosaic, ability to select/view Image tiles etc.) were converted into low level software requirements and
assigned a “difficulty” rating and a timeline feature sets were implemented in order of priority

Hamed was also responsible for developing the custom User Interface themes-including custom
buttons, backgrounds, logos — all designed in Photoshop. This was an in iterative effort with significant
input from Anthony on appearance and layout of individual views.

5.2 Anthony Soung Yee (Apper)

Anthony was responsible for conducting the research on mosaicing algorithms. Although his research
work on mosaicing related more closely to stitching algorithms (as seen in panoramic photography),
there were still some relevant techniques concerning optimisation that were useful for the current
image mosaicing algorithms.

Anthony was also responsible for designing the user interface layout for the App. Using the principles of
Human factors, he designed low fidelity prototypes (on paper and then in Powerpoint) with the goal of
communicating the functions of the App easily to the user. In order to aid in the process of converting a
prototype to an actual application, Anthony was responsible for implementing the individual screens in
XML, as well as creating an App shell in Eclipse that links the screens together. It was useful for the
Programmer to be able to see a skeleton of the final design before incorporating the project code.

12

6 Apper context

Although the form of mosaicing in the Apper’s field strictly involves the Human factors in visual search
using stitching algorithms as opposed to this form of mosaicing, there are several links between the two.

6.1 Relating the App to mosaicing in visual search tasks

There is a lot of research work investigating how people conduct visual search in data spaces such as
image sets. A number of Human factors studies have been conducted for understanding the processes
by which we conduct visual search in unstructured vs. structured data sets. For example, this formed
the basis for the idea of a fish eye display. In a similar vein to my thesis topic, this technique of
mosaicing may be more efficient for the human operator in finding a particular image within a large set,
compared to conventional displays of search results. In other words, it could be argued that structuring
images in a meaningful set may help the operator to find a target image in less time, or with fewer
navigational gestures. Thus, although this collaging technique is not a core part of my thesis, the
development of the mobile application may be worth conducting a formal study. This would be of
greater interest to the HCl community, rather than the Human factors community.

6.2 Relating the App to Human factors

More generally, the field of Human factors has identified a host of issues that have important
implications for the development of mobile applications. This includes accounting for navigational
issues, using gestural interfaces and dealing with a limited screen size and resolution. One of the most
important personal developments in this course was being given the chance to design and implement a
Ul for a mobile device. It highlighted many Human factors issues related to design, that could only be
experienced by trying to create an App layout myself. This practical experience comes with at a low cost
to an interface designer, and may be a very effective way to practice good Ul design.

7 Future work

The following section describes some future work to enhance the current implementation of the App.

7.1 Social media integration

One relatively simple enhancement could be to incorporate social media functions such as sharing
image mosaics. Moreover, it may be possible to have multiple users contribute to image mosaics, by
posting pictures in a common location.

7.2 Incorporating online image search results

One of the functionalities that we wanted to include was using image databases such as Google image
search or flickr as the tile images for the mosaic. It was imagined that you could enter a search query,
and images obtained from the search results would be used to create a mosaic of related search images.

7.3 Optimisation and stability

13

One of the current limitations in the App is the processing time to create mosaics. Because of the time it
takes to generate mosaics under the current implementation, the image sizes had to be reduced. With
more time, it would be possible to further optimise the speed of the program.

7.4 Commercialisation

Given the slew of multimedia apps on the Android market, there is no doubt that this App could be
commercialised. Because the App was intended for entertainment purposes with a requirement of only
photographs, there may be high demand for the App. Given the growing number of images that users
are storing on their phone, it is believed that a large user base would download this kind of App for
displaying and sharing images to friends and family. However, we believe that there many
enhancements and bug fixes must be addressed before commercialising. Furthermore, given the large
number of Apps for displaying photos, it would be have to be priced competitively in order to attract
customers. It is imagined that a free version could be offered alongside a paid version with enhanced
features (online searching, for example).

14

