
(1)

ECE 1778:
Creative Applications for Mobile Devices

 Lecture 5
February 8, 2012

Today

1.  Logistics
2.  Proposal Discussions
3.  Assignments P3 and A3
4.  Programming Essentials for Android

(2)

Logistics

(3)

Assignments

n  A3 and P3 are out today – will discuss later in lecture
–  A3 changed a little yesterday, in case you already acquired it

before that

n  A2 and P2 have been graded, with comments online
–  See blackboard portal

n  General Comments on A2 from Braiden Brousseau (TA)
n  General Comments on P2 from Daniel DiMatteo (TA)

(4)

Project TimeLine

1.  Forming Groups
2.  One-Page Proposal

–  Submitted Last Week – all are now approved

3.  Project Plan
–  Due Today

4.  Proposal/Plan Presentations
–  Weeks of February 14 and 28 [No class in Reading Week]

5.  Spiral 2 & Spiral 4 Presentations
–  2: March 6/13 4: March 20/27

6.  Final Presentations
–  Weeks of April 3 & 10

7.  Final Report Due April 12th
(5)

Project Plan Presentations

(6)

Plan Presentations Start Feb 14

n  Formal Presentation
–  Using PowerPoint, Keynote, PDF or OpenOffice

n  You will not know in advance if you’re presenting on the
14th or 28th, to be fair, so come prepared to talk

n  Send the presentation to me by email by Tuesday
Morning, February 14, at 9am
–  jayar@eecg.utoronto.ca

(7)

Time Limit

n  Five Minute Time Limit
–  I will start timer that makes annoying sound, and then ask for

wind-down
–  Omit needless words

n  Three Minutes for Questions
–  Can be extended if seems worthwhile

(8)

Presentation Contents

The Essence of the Plan submitted today:

1.  Reprise Goal, make more precise
2.  Give Mock-ups of What User Sees
3.  Block Diagram of Code
4.  Statement of Risks/Issues
5.  What do you need to learn that you don’t know
6.  For Groups with Appers

–  1 extra minute, for Apper to say how this fits into their field

(9)

Did I Mention the Five Minute Limit?

n  This is both serious and important
–  To this course and your ability to communicate going forward

n  How many slides can there be in 5 minutes?

n  How much can go on a slide?

n  Are pictures good things in presentations?

(10)

How Do You Know if Presentation is Good?

n  Practice it, standing up, in front of:
–  First, no-one
–  Then, a few others
–  In your presentation, tell us how many times you practiced it
–  Not too much, either, shouldn’t sound memorized

n  Time it
–  if too long, cut it

(11)

How Do You Know if Presentation is Good?

In Practice:
–  Listen to what you are saying
–  Does it make sense listening with the ears of the audience?

Who is Your Audience?
–  A mixture of technically-literate and people with expertise in

some another area [different from your own!]
–  Make sure the lay people know what you’re doing - the goal
–  OK to go somewhat technical after that, but don’t assume we’re

all expert in every sub-field of ECE and CS

(12)

Proposal Discussions, continued

(13)

One Member from Each Group

n  Please stand up, and describe your proposal

n  What & Why
–  Describe the idea, and its motivation

n  Scope
–  Give a good sense of functionality – what is involved
–  Show that you’ve thought about the pieces

n  Apper: how it relates to field/expertise

(14)

Groups

(15)

n  Need Names for Group Projects
n  Need to check who has already spoken

Group # Project Name Apper Apper Field Programmer1 Field/Degree Programmer2 Field/Degree Platform
1 Marc Halatsis iSchool Felix Lazbin ECE/M.Eng (?) Blair Fort ECE/PhD Android
2 Adrian Matheson Industrial Eng/PhD Frances Awachie ECE/? Matthew Thorpe ECE/M.Eng Android

3 Justin Chee
Rehabilitation
Science/PhD Tuck-Voon How IBBME/PhD Eric Wan ECE/M.A.Sc. Android

4 Toronto Museum Shannon Linde iSchool Abhinav Goyal ECE/? Sana Haghighi ECE/M.Eng Android

5 Scott Pollock
iSchool/Museum
Studies Xu Sheng ECE/M.Eng Tony Ming Zhou ECE/M.Eng iPhone

6
Learning
Emotions Alexandra Makos OISE/PhD Rebecca Dreezer CS/PM Cindy Lau IBBME/M.A.Sc. Android

7 Jill Cates IMS/M.Sc. Eddie/Zi Hi ECE/M.Eng Theodore Avery CS/M.Sc. iPad

8 Graham Candy Anthropology/?
Steve Chun-Hao
Hu ECE/? Chenliang Man ECE/? Android

9 Ani Tumanyan CS/PM Arsen Tumanyan CS/PM Android
10 Sam Liu IMS Jonathan Tomkun IBBME/MHsc Simran Fitzgerald CS/PM Android
10 Dario Kuzmanovic Research Ethics/? Valmiki Rampersad ECE/M.A.Sc. Colin Chung ECE/M.Eng Android
11 Heyse Li MIE/? Matthew Ma CS/? Android
12 Nanxsuan Wang ECE/M.Eng Peng Liang ECE/M.Eng Android
13 Robot Control Fitsum Andargie ECE/PhD Paul Bovbel MIE/PhD Android
14 Mani Golafra ECE/M.Eng Ryne Yang ECE/M.Eng Android
15 AR Game John Matienzo ECE/M.Eng Valentin Berbenetz ECE/M.Eng iPhone

New Assignments P3 and A3

(16)

Assignment P3

Location, Motion Sensors and Image Capture
n  Learning how

–  to determine out where the phone is, geographically (GPS)
–  how it is moving (accelerometer)
–  how to use the camera to capture images

1.  Read the relevant parts of
–  Murphy & Android Development site (Android)

• Murphy doesn’t have good coverage of sensors
• This lecture has notes on sensors

–  or Mark, Nutting & LaMarche (iPhone)

(17)

Assignment P3 – for Programmers

n  In response to being shaken,
–  phone takes a picture 1 second after the shaking stops, and
–  records the GPS location at the same time.

n  Each location should be stored in a growing list;
–  when the user views the list item, your application should display

the picture taken at that location.
–  The list should be maintained over separate invocations of the

app (i.e. stored in a file)
–  it should be possible to delete a list item, which would remove

the corresponding image in the file system.

n  Due next week,
–  February 13th, 6pm, penalty for being late

(18)

Assignment A3 – for Appers

n  Recall: one goal of course is to give experience in
reaching across disciplines

n  Anticipate that Appers will be teaching Programmers the
language of their discipline, and the basic concepts
–  Please, programmers, ask questions – get jargon explained
–  AND vice-verse.

n  Assignment A3 is an experiment in bringing Appers a
little into the world of programming
–  To give you practice talking to each other

(19)

Basic Idea of A3

n  Apper: Choose from one of 4 technical areas listed that
you are not already familiar with*, that your
programming partners are:

1.  Searching and Databases
2.  Digital Signal Processing
3.  Optimization
4.  Internet Communication

* This wasn’t in the original posted version of A3

(20)

Then – Part 2

n  Spend an hour with your partners, learning about this
area, and take notes.
–  Don’t use any other sources of information

n  Write up those notes & submit this Friday (Feb 9, 6pm)
–  500 words + pictures

(21)

Then – Part 3

n  Pursue a deeper understanding of the topic, via Internet
n  Write another 500 words, due February 13th, 6pm

–  Do a better job of describing the topic; add some nuance.

n  Offer some additional commentary on your view of this
learning process
–  how it went,
–  how much you learned from Part 2 vs. Part 3,
–  what would have made it better

(22)

Android Essentials

•  Life Cycle
•  Sensors
•  Eclipse Debugging
•  Pop-Up Messages – Toast & Alerts

(23)

Android Activity ‘Life Cycle’

(24)

Android Application Life Cycle

n  Recall: Activities are screens that the user
sees, and associated process

n  Android manages these Activities as a
stack.

n  When a new activity is started, it is placed
on the top of the stack and becomes the
running activity

n  The previous activity always remains below
it in the stack,
–  and will not come to the foreground again until

the new activity exits.

(25)

An Activity Can Be in 1 of 4 ‘States’

State 1: Active/Running
–  Activity in the foreground of the screen (at the top of the stack)
–  Has ‘focus’, meaning user interactions go to it.

State 2: Paused
–  activity has lost focus but is still visible
–  a new smaller or transparent activity has focus on top of the

activity)
–  A paused activity is completely alive (it maintains all state and

member information and remains attached to the window
manager), but can be killed by the system in extreme low
memory situations.

(26)

Activity States 3 and 4

State 3: Stopped
–  activity is completely obscured by another activity
–  retains all state and member information
–  no longer visible to the user so its window is hidden
–  it will often be killed by the system when memory is needed

elsewhere.

State 4: Dead
–  If an activity is paused or stopped, the system can drop the

activity from memory by either asking it to finish, or simply
killing its process.

–  When displayed again to the user, it must be completely
restarted and restored to its previous state.

(27)

Methods Called By Android to Change States

n  Diagram shows states and
methods that cause them
to change

n  Ovals: the 4 states

n  Rectangles: methods
called by android when it
wants to change activity
state

(28)

References

1.  The Android Documentation:
http://developer.android.com/reference/android/app/
Activity.html

2.  Murphy, Busy Coder’s Android, Chapter 18

–  “Handling Activity Lifecyle Events”

n  Once your project gets going, it is really important to
read through this and understand it
–  Last year’s students pointed out that this was the key thing they

had not understood in Android, that caused the most problems

(29)

The Key ‘LifeCycle’ Methods

OnCreate()
–  Familiar with already – brings the activity to life

OnPause()

–  Another Activity has gained the ‘focus’
–  Should stop any background threads, release large resources

(such as a camera)
–  No guarantee that OnDestroy() will be called, so best to save

all state here

OnResume()
–  Called as activity starts, or is restarted from a pause
–  Can recall state from file, refresh the User Interface – see

example

(30)

Key Loops in Life Cycle: 1 Entire Life

n  The entire lifetime of an activity happens between the
first call to onCreate(Bundle) through to a single final call
to onDestroy().

n  An activity will do all setup of "global" state in onCreate(),
and release all remaining resources in onDestroy().
–  For example, if it has a thread running in the background to

download data from the network, it should create that thread in
onCreate() and then stop the thread in onDestroy().

(31)

2. Visible Lifetime

n  The visible lifetime of an activity happens between a call
to onStart() until a corresponding call to onStop().

n  During this time the user can see the activity on-screen,
though it may not be in the foreground and interacting
with the user.

n  Between these two methods you can maintain resources
that are needed to show the activity to the user.

n  For example, you can register a BroadcastReceiver in
onStart() to monitor for changes that impact your UI, and
unregister it in onStop() when the user an no longer see
what you are displaying. The onStart() and onStop()
methods can be called multiple times, as the activity
becomes visible and hidden to the user.

(32)

3. Foreground Lifetime

n  The foreground lifetime of an activity happens between a
call to onResume() until a corresponding call to
onPause(). During this time the activity is in front of all
other activities and interacting with the user.

n  An activity can frequently go between the resumed and
paused states -- for example when the device goes to
sleep, when an activity result is delivered, when a new
intent is delivered -- so the code in these methods should
be fairly lightweight.

(33)

The Accelerometer

(34)

The Accelerometer

n  The Accelerometer in phones is
quite an exciting sensor!

n  It can be used to feel motion in
three dimensions
–  It samples the acceleration at least

100 times/second
–  It is very sensitive

n  It measures acceleration in m/s2

n  Don’t need permission to access
sensors in manifest

(35)

Gravity

n  Recall: acceleration due to gravity is 9.8 m/s2

n  When the phone isn’t moving, one or more of the axes
will ‘feel’ this acceleration due to gravity or part of it.

n  A phone that is falling, will feel 0 acceleration on all three
axes

(36)

The Accelerometer Coordinate Space

n  Coordinate-system is defined relative
to the screen of the phone in its
default orientation.
–  axes are not swapped when the device's

screen orientation changes.

n  X axis is horizontal & points right
n  Y axis is vertical & points up
n  Z axis points towards the outside of

the front face of the screen.
–  coordinates behind the screen have

negative Z values.

(37)

Example Application

n  Read the accelerometers every time they change
n  Output the raw values in each dimension
n  Will include gravity

(38)

XML Layout – just a text field

<LinearLayout xmlns:android="http://schemas.android.com/
apk/res/android"
 ….

<TextView android:text="@+id/Output"
android:id="@+id/accText"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
android:textSize="80sp"</TextView>
</LinearLayout>

(39)

To Access a Sensor

Three key classes:
1.  SensorManager
2.  Sensor
3.  SensorEvent

n  Need to create a SensorManager class

(40)

SensorManager

n  Is a class that
–  First lets you figure out what sensors are on the device
–  produces a list of all the sensors available,
–  Your program must need to check and see if the one you want is

actually on the device:

n  First, create the general sensor manager
 myManager = (SensorManager) getSystemService
 (Context.SENSOR_SERVICE);

n  Then, ask if the sensor you want is on the phone, e.g. the
Accelerometer:

 sensors = myManager.getSensorList
 (Sensor.TYPE_ACCELEROMETER);

(41)

SensorEvent Class

n  Contains the sensor reading of the sensor, including:
–  Accuracy of the measurement
–  Sensor that generated the event
–  Timestamp

• The time in nanoseconds at which the event happened
–  Values

•  e.g the three values of the acceleration along each axis

(42)

Front imports

package et.edu.aau.ece.jonathan.readaccel2;
import java.util.List;
import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.util.Log;
import android.widget.TextView;
 (43)

Declarations & usual

public class readaccel2 extends Activity {
 private TextView accText;
 private SensorManager myManager;
 private List<Sensor> sensors;
 private Sensor accSensor;
@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 accText = (TextView)findViewById(R.id.accText);

 (44)

Set-up Sensor

 // Set Sensor + Manager
myManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensors =
myManager.getSensorList(Sensor.TYPE_ACCELEROMET
ER);
 if(sensors.size() > 0)
 {
 accSensor = sensors.get(0);
 }
 }
 (45)

Listening, Reading, Outputing

private final SensorEventListener mySensorListener = new
SensorEventListener() {
 public void onSensorChanged(SensorEvent event) {
 float x = event.values[0];
 float y = event.values[1];
 float z = event.values[2];
 String output = String
 .format("x is: %f / y is: %f / z is: %f", x, y, z);
 accText.setText(output); }
public void onAccuracyChanged(Sensor sensor, int
accuracy) {}};

(46)

Registering the Listener

@Override
 protected void onResume()
 {
 super.onResume();
 myManager.registerListener(mySensorListener,
 accSensor, SensorManager.SENSOR_DELAY_GAME);
 }

n  Last parameter sets the frequency of updates

(47)

OnPause – Turn off accelerometer

@Override
 protected void onPause()
 {
 myManager.unregisterListener(mySensorListener);
 super.onStop();
 }
}

n  i.e. unregister the listener

(48)

To Use the Compass (Magnetometer)

n  Change:
sensors = myManager.getSensorList
 (Sensor.TYPE_ACCELEROMETER);

n  To:
sensors = myManager.getSensorList
 (Sensor. TYPE_MAGNETIC_FIELD);

(49)

The Other Sensors

(50)

Useful Method – sensor maximum

n  MaxRange = accSensor.getMaximumRange();

n  Tells the largest value a sensor can deliver on a device

(51)

There are quite a few Sensors!

n  Some are just different calculations with same sensor
1.  Accelerometer:

–  Sensor.TYPE_ACCELEROMETER

2.  Gravity
–  The accelerometer with non-gravity acceleration filtered out?
–  Sensor.TYPE_GRAVITY
–  Only available on Android 2.3 and later

3.  Linear Acceleration
–  The accelerometer with gravity removed (filtered)
–  Sensor.TYPE_LINEAR_ACCELERATION
–  Only available on Android 2.3 and later

(52)

Compass/Magnetic field

n  Sensor.TYPE_MAGNETIC_FIELD:
n  Measures the magnetic field in three dimensions,

–  Measured in micro Tesla

n  So, just Change:
sensors = myManager.getSensorList
 (Sensor.TYPE_ACCELEROMETER);

n  To:
sensors = myManager.getSensorList
 (Sensor. TYPE_MAGNETIC_FIELD)

(53)

Gyroscope

n  Sensor.TYPE_GYROSCOPE:
n  Not on our phones
n  Gives pitch, roll and yaw in radians/second

–  Measures motion more directly

(54)

Light Sensor

n  Used for measuring ambient light to set screen
brightness

n  Measures the light, in Lux, coarsely
–  Seem like roughly 8 different values, maybe, when I tried it on

the Nexus One

n  Sensor. TYPE_LIGHT

n  Available on Nexus S

n  DEMO

(55)

Proximity Sensor

n  Used for measuring how close the phone is to person’s
ear

n  To turn off the touch screen
n  Usually binary: close or far
n  Sensor.TYPE_PROXIMITY

n  DEMO

(56)

Sensors of The Future

(57)

Sensors to Come

n  From the New York Times this past week:
n  If you own a smartphone, you probably know just how

smart those little gadgets are. They know where you’re
standing, the direction you’re moving in and if you’re
holding the phone vertically or horizontally.

n  To perform these clever tricks, the inside of your phone is
stuffed with a number of sensors, which are little
electronic components that can sometimes be as thin as
a piece of paper.

n  The coming generation of mobile phones — and other
gadgets for that matter — will have so many new types of
smart sensors that your current mobile phone will look
pretty dumb.

(58)

Sensors to Come

n  FromBenedetto Vigna, general manager of the MEMS
division of STMicroelectronicsThe next smartphones
would have altimeter sensors that would be able to
detect your elevation. “
–  These sensors will tell people what floor they are on in a building,

or could be used to more precisely determine where you are in
relation to your friends on a location-based service,” he said.

n  Other new sensors could include heart monitors to keep
tabs on your health.

(59)

Sensors to Come

n  There will also be sensors that can detect perspiration
and could be used to monitor your excitement level and
even mood.

n  Additionally, phones will include more microphones, and
temperature and humidity sensors to better determine
their location and surroundings.

(60)

Sensors to Come

n  This sensor-filled world will also affect video games.
Sensors that can detect mood and excitement will usher
in an era of video games that will factor in emotion during
gameplay.

n  Mr. Vigna said some technology companies were
working on ways to increase security and privacy on
mobile phones with sensors.
–  One way to do this is to build software that detects how you hold

and interact with the device — almost like a motion fingerprint.
After you use a new phone for a short period of time, it will start
to learn your patterns and automatically lock or unlock the phone
accordingly. This could be used for more secure banking too.

(61)

Sensors to Come

n  David Pogue:
n  As I’ve written in the past, it’s only a matter of time before

these sensors move beyond the smartphone and into
people’s clothes, glasses and homes.

n  ”Sensors will be everywhere in the next few years and
will be able to help people become more conscious of the
environment and our own health,” explained Mr. Vigna.
“Your socks, shoes, glasses and even your garbage can
will have sensors inside designed to help you manage
everything from your effects on the environment to your
health.”

(62)

Using the Debugger in Eclipse/Android

(63)

Debugging

n  Simple debug: use Log.d(TAG, “String”);
n  Better: use the debugger in Eclipse/Android

n  First, make sure your phone or emulator is set to enable
‘USB debugging’

n  From the home screen:
–  Settings->Applications->Development
–  Check USB Debugging

(64)

Set a Breakpoint

n  Go to your source file,
n  right click in the left-most column
n  Select ‘Toggle Break Point’

–  Will set a breakpoint at that source code line (little blue dot)

(65)

Right Click over
here

To Run the Debugger

n  Click the ‘green bug’ to the left of to the ‘play’ button

(66)

Once the Breakpoint is Hit

n  The whole Debugger perspective shows up:

(67)

Can Single Step over, Step In, Run

n  See this graphic near the top:

1.  Continue running from Breakpoint
2.  Step in to a function
3.  Step over a line (single step)

(68)

Can View Value of Variables

n  In the upper right window pane:

n  To switch between regular and debug perspectives
(69)

API Demos!

(70)

Google’s API Demos

n  Are great for learning everything Android
n  Every feature of the phone is used, in a simple example
n  To see them, create a new project in Android
n  Select the button: “Create Project from existing source’

(71)

Then,

1.  Select Android
2.2 as Build
Target

2.  Set Samples to
ApiDemos

3.  Finish

(72)

Then, Experiment and Learn!

n  Each feature –
activity, camera,
sensor, is shown as
a simple example,
along with code

n  Lots!

n  Demo

(73)

Pop-up Messages

(74)

Pop-Up Messages

n  Are really handy for conveying an alert or
information to the user.

n  Two kinds in Android:
1.  Toasts
2.  Alerts

(75)

Toasts

n  A temporary message that
appears and then disappears
after a fixed amount of time
–  e.g. battery low warning
–  Someone signed in to Skype
–  Won lottery

n  Purpose is to be un-obtrusive
–  Doesn’t take ‘focus’ away from

your activity

(76)

Toast Code – Easy!

n  Create and show, all in one:
Toast.makeText(this,

 "Eureka, you win!",
 Toast.LENGTH_LONG).show();

Three fields:
1.  ‘this’ is the current class context

–  Can also use getApplicationContext() instead
2.  The text to be shown
3.  Length of time to show

–  LENGTH_LONG or LENGTH_SHORT constants

(77)

Alerts

n  A specific message that
changes focus

n  User must respond by clicking

n  Three parts:
–  Message title
–  Actual message
–  Up to three response buttons:

• Positive
• Neutral
• Negative

n  Use OnClick to respond to
buttons

(78)

Alert Code – using Toast to respond

new AlertDialog.Builder(this)
 .setTitle("MessageDemo")
 .setMessage("How are you feeling?")
 .setPositiveButton("I'm Positive",

 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 Toast.makeText(MessageDemo.this, "Eureka, you win!",

 Toast.LENGTH_LONG).show();
 }

})
(79)

Construction
of the part of

the Alert

A Toast in
response to
the positive

click

Neutral Button in Alert

n  A cascade of method calls

.setNeutralButton("Either Way",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 Toast.makeText(MessageDemo.this, "Neutral Feeling",

 Toast.LENGTH_SHORT).show();
 }

})

(80)

Neutral Button in Alert

n  Another cascade

.setNegativeButton("Either Way",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 Toast.makeText(MessageDemo.this, ”I’m feeling bad",

 Toast.LENGTH_SHORT).show();
 }

}).show();

(81)

This
shows the

Alert
DEMO:

MessageAlert

