
 1

ECE 1778 - Creativity and Programming for Mobile Devices
January 2013

Programming Assignment #P1, for Programmers

Introducing Yourself + Development Environment & Simple Widgets

PART I
A key part of this course is to form an inter-disciplinary group to do a new and exciting
application. To both help form those groups, and to make sure you have sufficient
background as a programmer, please create the following:

1. A text description of your background, as follows:
• A list of your degree(s), where you received them Be sure to include the

field you were studying
• A list of the computer programming courses that you have taken.
• A list of the programming projects you have undertaken, together with the

size (in number of lines of code) and the computer language used.
• Give the list of any companies that you have worked for as a programmer,

if any.
2. Create a video of yourself (on Youtube, as an ‘unlisted’ video) describing your

most significant programming project done in the past – its goal, your role in its
creation, and how well it worked. The video must be less than 2 minutes long.

Go to the Pepper website (you’ll see instructions on how to acquire a Pepper account on
the Blackboard Portal announcement) and click to the ‘Home’ page. There, select the
‘conference’ labeled Introductions, and create a new Note with your name as the title.
In the text of the Note, put your text from (1) above. Embed at the end the unlisted video
you created in (2). To learn how to embed the video into your note, read the ‘How to
embed your intro video into the Intro Note’ that the TA, Alexandra Makos, has put
there.

This is due on Tuesday January 15th at 6pm. Sooner is better, though! A penalty
will be levied if late.

PART II
The goal of this part of the assignment is to set up the Android Development environment
that you will use throughout this course, and make a basic ‘Hello World’ program and
run it. As we are trying to move quickly on the basics in the course, you will also learn
about how to layout simple buttons on the phone and how write code that reacts to them.

For Android Programmers
In this course you must have access to a Windows, Linux or Macintosh computer, all of
which are supported in the Android environment. You will have to download and install

 2

several packages on your computer to begin learning development. Go to this web page
to begin:

http://developer.android.com/sdk/index.html

Follow the instructions to download and install the ADT Bundle, which contains
everything you need.

To ensure that you’ve got the basic setup working, do the “Building Your First App”
tutorial described in the tutorials section of the Android Developers website:
http://developer.android.com/training/basics/firstapp/index.html. The key thing is to
learn how to start a project and make the Android Phone emulator work on your
development computer. It will also be helpful to read this section of the Android
developer’s website: http://developer.android.com/tools/workflow/index.html

The installation and tutorial make use of the Eclipse development environment (which is
used in many other software development contexts) together with the Android
Development Tools (ADT), which is specific to the Android operating system.

Learn Basic Environment

Read pages 1 through 123 of the Murphy Book, The Busy Coder's Guide to Android
Development, version 4.4, doing the small coding exercises given there. You can
simply read through the tutorials if you wish. Tutorial #1 gives a second set of
instructions on how to install the development kit, in a somewhat different order, which
you won’t need if you’ve followed the instructions above. If you have trouble with the
instructions above, you could try these instead. Tutorial #2 is a lot like the first app
tutorial that you did above.

This will expose you to the basic development environment, as well as the structure of an
Android Project’s files, and the Eclipse environment. The later pages move on to
describe activities (which are the pages that an app user sees), and how to lay these out.
This includes user interfaces such as buttons and text fields, and how to display images.

You can download all of the examples in the The Busy Coder's Guide to Android
Development book from the website https://github.com/commonsguy/cw-omnibus. To
download all of the examples in a zip or tar file, click on the download ‘zip’ button on the
left upper part of the page.

If you want to run these examples within the Eclipse environment, start Eclipse, see the
instructions on page 35 of the text. (Basically choose File->New->Android Project. Put
a related name in the ‘Project Name’ box, and click on the ‘Create project from existing
source’ radio button. Using the browse button next to the ‘Location’, select the directory
that contains the complete project – i.e. the one that contains AndroidManifest.xml,
assets, bin, gen, libs, res and src folders/directories. Click ‘finish’ and the code will be
imported into Eclipse as usual.)

 3

For iOS (iPhone) Programmers

Go to the website https://developer.apple.com/devcenter/ios/index.action and register,
and download the Xcode 4 development kit. To be enabled to download code into an
actual device, you will either have to pay the $99 annual fee, or go to the following site
that explains how to acquire the UofT site license for these tools:

http://www.its.utoronto.ca/communication-and-collaboration/Apple_iOS_Developers_Centre.htm

Read and do the exercises in Chapters 1, 2, and 3 of Beginning iOS 6 Development, by
David Mark, Jack Nutting, Jeff LaMarche and Fredrik Olsson, which provide a good
introduction to the iOS basics necessary to do this assignment.

Assignment
Write a mobile application that presents the users with four widgets:

1. A text field that initially contains the word ‘Things haven’t started yet’
2. A button labeled Change.
3. A button labeled Picture.
4. The standard menu.

The program should respond to the pressing of the buttons in the following way:

• When Change is pressed, the text field should have its contents changed to ‘The
Change Button has been pressed 1 times.’ Subsequent presses of the button
should increment beyond the number 1.

• When the Picture button is pressed, a picture of a dog should appear below the
buttons. The next time it is pressed, the picture should disappear, and then appear
on alternate presses.

• Also, make use of the default menu that is supplied in Android, and change the
‘settings’ button to become a ‘reset’ button. When this button is selected, the text
field should return to be ‘Things haven’t started yet’ and the count should be reset
to 0.

You should only need an emulator to do this assignment, not an actual phone.

With all assignments, including this one, we’d like you to produce applications that work
well and robustly, as good training for the app that you’ll make in the project. As such,
we require that you follow Braiden Brousseau’s guide to Quality Apps, which is
appended below.

 4

To Hand In

For Part I: Due January 15th at 6pm, as described above.

For Part II: January 22nd, 6pm. Marked out of 10, 0.5 marks off every hour late.
What to submit:

Android: a zip file containing your complete project, runable from Eclipse.
 iPhone: a zip file of complete project, runnable on Xcode 4.5.2.

Submit your zip file through the Blackboard Portal for this course. Be sure to submit it to
the assignment ‘P1’ To do this, go to the Course Materials section of Blackboard, and
click on Assignment P1. You should see, under ‘2 Assignment Materials’ a place where
you can attach your PDF file.

 5

Braiden Brousseau’s Guide To Quality Apps

The purpose of this guide is to ensure that the software you create in this course – both
the project and the assignments, meet a certain standard of quality and robustness. The
assignments will include grades allocated towards these guidelines, as motivation to
make sure your code works well. This will stand you in good stead as you build the large
app that is your project. These guidelines come from our previous year’s experience with
marking assignments and projects. These guidelines are written for Android
programmers, but similar concepts apply for iOS.

Don’t let the User crash the App
 The user shouldn't be able to crash an app by pressing touch objects in the "wrong" order
or by spam clicking something. If an activity requires button 1 to be pressed before
button 2 (for example to select what data file should be used before processing), then
pressing button 2 first should not crash the app. Nothing should happen, or better yet the
user could be notified that they must select a data file first by pressing button 1.

Don’t make the user wait
Avoid unnecessary slowdowns caused by overuse of new activities where not
appropriate. Avoid excessively reading and writing of large files to disk. For example if
you want to make a picture move from left to right, move the location of the ImageView,
don’t destroy the ImageView and make a new one at a new location reloading a 2-3MB
photo every time. Make use of time while a user is idling. In an app that shows a user the
top stories of the day from a website, load the data for story 2 while the user is reading
story 1. It is very likely the next action from the user will be to click for the next story.
This is better experience than having to wait for a download every time.

Use UI Elements Appropriately
Although you can programmatically set the text in an “EditText” box, if the app has no
intention of the user entering text here use a “TextView” or another element that the user
can not change.

Content-Independent Interface
The UI should behave and look similar regardless of what data is loaded or entered. For
example, loading a picture of different sizes should not cause buttons in the app to
physically move around to different places on the screen. Loading and displaying a large
text file shouldn't push UI elements off of the bottom of the screen, or somewhere else
unreachable. If the UI changes based on what content is loaded it should be intentional

 6

Appropriately Sized and Labeled Touch Targets.
Avoid making UI elements (that the user must touch) very small and close to other
elements they might touch by accident. It should be clear in an app what can be touched
and ideally what action will be taken. One can use text labels, icons, pictures, colours etc.
to convey to this type of information.

Fill Space Appropriately
UI elements should have a fairly commonsense space occupancy. For example, suppose
an activities' main purpose is to measure how long it takes to run a certain distance and
show you your current time along the way. Making the running time a font 8 textview in
the upper right hand corner while making a “share my time to twitter” button 3/4 of the
screen is probably bad design.

