Final Report:
Parking Information App for Commuter Rail

Apper
Adam Wenneman
adam.wenneman@mail.utoronto.ca

Programmer
Tai Nguyen
tai.nguyen@outlook.com

Programmer
Mike Qin
mikeandmore@gmail.com

Word Count
Main Report: 1,829
Apper Context: 285

mailto:adam.wenneman@mail.utoronto.ca
mailto:tai.nguyen@outlook.com
mailto:mikeandmore@gmail.com

Introduction

GO is one of the largest commuter rail services in North America. In 2012, they served over
80,000 morning commuters, and they project this number will grow to over 120,000
morning commuters by 2020. While GO trains have adequate capacity for all of these
commuters, GO parking facilities do not. Already over 50% of station parking facilities are
at or near capacity, and GO has observed both the time spent searching for parking and
the incidence of illegal parking rise as lots approach capacity. The inability to quickly find
free, convenient parking is a major frustration for riders that have become accustomed to it
being readily available at GO stations. At the same time, many GO lots are underutilized.
This is not a problem GO will be able to simply build themselves out of, due to the high
costs of building and maintaining large parking structures and rising land value surrounding
the busiest stations. GO is concerned about this looming parking problem for two reasons:
over 60% of riders currently access GO stations by personal automobile, and historic
morning ridership has closely matched the available parking supply. To solve this parking
problem for it’s users, GO is trying to find ways to make better use of the existing excess
parking capacity at other stations.

Our app addresses the parking problem at GO stations by attempting to shifting
commuters from stations with little remaining parking capacity to stations with excess
capacity. This results in a more efficient use of GO’s excess parking facilities and less
frustration for users previously unable to find convenient parking. Our app does this by
providing information on the availability of parking at each GO station for the time at which
the user will arrive at the station. This is important because in peak commuting periods,
most commuters arrive within a small time window. Many heavily used parking facilities
approach their capacities in a short amount of time during the morning rush. If our app
simply reported current occupancy, it is likely By forecasting parking occupancy, we can
tell the user whether or not they will find a spot when they arrive before they even get in their
car. With this information, users can then decide to drive to a different station, or even to
bike, walk, or take local transit to GO instead.

Overall Design

Location Services
Yy

Current location
(GPS)

-

Google Maps API

Server Side
) S—

Metrolinx Data

N

Our API

User Input

Profile Input

(e.g. favourites, settings)

Profile Storage

Occupancy
Forecasting
~
(_‘;\

App Controller
Stations Near Me

‘x
Main Map View Favourite Stations

Application Views

Server Side
The server functions both as the repository for all parking information, as well as the
prediction engine. It contains information on each parking lot including maximum capacity,
GPS coordinates, and lot occupancy. This information is currently populated from historical
data, but can also be updated in real time. MySQL was chosen as the backing data store
because of the data’s highly relational nature. The database was designed as an
abstraction layer between the lot operator’s data and our API so that we can easily
consume and make use of data from different operators. The web server is built on the
Play! Framework. The decision to use a web framework allowed for rapid prototyping of
our ideas. The entire server side implementation is built on Amazon Web Services, again,
because it was quick to deploy and free to use.

The Metrolinx Data block is complete, but not to the extent we had initially planned.
We were hoping to get a connection to real-time occupancy information on Go Station
parking lots. We only received historical data in Excel files. These files contained surveys
of station managers on when the lots reached 90% capacity, and month to month
variations, and other statistics.

The API block is complete. It is the intermediary between the database and the app.
It serves requests from the app with JSON formatted data.

The forecasting block is currently very rudimentary. We report that a lot is at 90%
capacity based on the time indicated in the surveys. Analysis of the data manually collected
from Malton station shows that the pattern of occupancy for that particular station
resembles a step function. In the future, when we have fine-grain, real-time information at
our disposal, a station may be modeled by a collection of logistic functions. This work
remains to be done.

App Side

While the server side merely provide an interface to access our prediction server, the App
side will consistent all of the functionality that users need in a user-friendly way. In our App,
we are able to show all the stations on the map, list user’s favorite station and show station
details. In the Map view, we show a station as a marker, color of the marker will indicate
how full the station parking lot is, and how long does it take for user to get there from
current location; station detail view will show a predicted occupancy overtime, in case of
user getting there late or early.

Our app contains the following modules: local database storage, communication,
and Ul. Local database storage is used for storing frequently accessed data, such as
station list or favorite stations, so that user won’t have to fetch that every time through the
internet. Communication module was used for communicate our prediction server. As
mentioned previously, our prediction APl will return a JSON response, communication
module is responsible to construct appropriate request and parse the JSON response. Ul
module will construct the user interface from the data structure it read from either
communication model or local storage.

We choose to use Scala programming language and Scaloid library to implement
our app. Scaloid is the Scala wrapper of Android SDK. Scala was chosen because it
could dramatically reduces the size of readability of our app code. Also a lot of standard
library in Scala turns out to be very useful, such as Future and JSON parsers.

While we implemented our app, we found that HTTP library provided by Android SDK have
a fatal flaw: it does not support HTTP 1.1 pipeline. While we need to request more than 20
responses simultaneously, we decided to implement our own HTTP client.? Fortunately, it
only takes less than 900 lines to implement a HTTP client in Scala.

In the future, we decided to work on the portability of our app. Right now there are
two issues we have that limit our portability. First, Scala JSON parser is a recursive
descent parser and will consumes a lot of stack space. This is not allowed on many
phones. Second, when we started this app, for consistency behavior and easy to
debugging, we chose the stock Android SDK rather than the support library. This will

' https://code.google.com/p/android/issues/detail ?id=3273
2 Note that other Android App is suffering from this issue as well. The Opera Mobile and the Android Browser
both have its own HTTP client that supports HTTP 1.1 pipeline.

https://code.google.com/p/android/issues/detail?id=3273

greatly limit our portability. Since this app is still in a prototype stage, so we decided to
push our portability issues to the future work.

Statement of Functionality

Recall that our goal was to present the user with a tool to quickly and easily determine the
availability of parking at the time of his or her arrival at a lot. To this end, our efforts are
largely a success. We have a functional app backed by all the required services. Where we
fell short was the ability to predict future lot occupancy. This was due to lack of data. GO
does not charge its riders to park at its stations. As such, it has little incentive to collect
real-time occupancy information. Without this information, we were unable to build a model
or even to explore what such a model might look like. We continue to develop our
relationship with Metrolinx and other transit operators. Should we eventually gain access to
this data, we have designed the system such that it will be easy to integrate in the future.

v M 9 & Fuld 121
@ Smart Parking

¢ m % Falid 11:28

@ Smart Parking

ALL FAVORITE

; ‘ — Etobicoke North - w
'\le Kigly Gt;rmley ; @ ‘ Belﬂeld

1 Total Capacity: 290

290 Predicted Capacity Overti

Oriole GO Station
Takes 23 mins to get there
Vaug Capacity: 29 when get there

Rouge Park 261

O 232
Thornhill \ Y Malvern_goygel 203

. 4‘_07 Newlcnbrot%-t __Scar 8 -
Jane'?nd Finch North York \ .

/ | Don Mills
XQ 'Qwew") Q 116

87

-iRI’ChVIEW Yorke East York
L

?Qb|?ke

‘, oogle

| The Beach 58

To?(_)_nto T oo

113301140 11:50 1200 12:1012:20

Lessons Learned

From the App side, we have learned that getting a app working efficiently is a great
challenge. Android provide a Java/JVM environment, but programming on it feels different
than other traditional Java Platforms. First, we have to be aware of the lifecycle. In the
traditional Java programming platform, lifecycle is simple and Java programmer does not

need to think too much about it. However, on Android, lifecycle is complex and important,
we have to think explicitly how the lifecycle of resources works.

Second, it’s the resource constraints. On traditional Java platform, memory is
usually cheap, but on Android, it depends. Some latest phones have 3GB RAM, while
some other still decent phones, like Nexus S, only have 380MB RAM. This limitation
causes various resource constraints and performance problems, like stack size or frequent
GC pauses. Therefore, in order to make our App portable on as many phones as possible,
we want to make sure we use and allocate memory efficiently.

Contribution by Group Members

Tai was responsible for the server side implementation. He built the web server and
database, and imported the Metrolinx data. Additionally, he and Adam performed
experiments to determine the feasibility of using the Tl sensor tags to collect real-time
occupancy information. When the sensor tags proved insufficient, he and Adam went on
site to manually collect occupancy information.

Mike was responsible for the Android App, implementing all the features we need
on the app side: including mapview, bookmarks, station details, etc. Our Android App will
request information from Google Map server and our server for prediction. Mike has written
the protocol for the communication between our Android App and web server.

Adam was responsible for the initial idea for the app. He worked with contacts at
Metrolinx to gain access to lot information data held by Metrolinx as well as their support for
the project. He collaborated with Tai to perform experiments to determine the feasibility of
using Tl sensor tags as traffic counters, which would have allowed the team to collect
higher quality data. He planned and coordinated a station occupancy count that the team
used in the forecasting step. He also managed the team’s workflow, ensuring all
deliverables were submitted on time and contained all required content.

Apper Context

This application is an implementation of a parking information system. Much research has
surrounded this type of system, but this application is the first working system we are
aware of in Toronto. The benefits of this type of system accrue to several groups. Users
benefit by saving time previously spent searching for parking. Lot operators benefit by
making more efficient use of their existing infrastructure. Society itself benefits as well, as
reduced cruising for parking and more efficient use of facilities reduces congestion and
prices over time.

Although this application applies the idea of a parking information system in the
context of a commuter rail service, it can be used in many other areas as well. My research
is focused on commercial vehicle operations in urban areas. Frequently, commercial
vehicles are unable to find adequate parking facilities to make their deliveries. This

problem applies both to couriers that need a space for just a short amount of time and
larger commercial vehicles that may require the use of loading facilities. Given the
constraint that significant amounts of additional parking facilities will not be constructed in
the near term, the problem for commercial vehicle operators begins to closely resemble the
problem faced by commuters using the GO system. Instead of planning a destination GO
station, commercial vehicle operators would use the app to plan their delivery tours,
according to forecasts of where and when they would be able to access parking and/or
loading facilities. This application provides a framework for how such a system would be
constructed and how it would work. The exercise of building this application also provided
valuable information on what some of the challenges of creating such a system would be.

Future Work

There is a large amount of potential for improvement for this application. The current
version suffers from long loading times required to collect the travel time information from
Google. Additional details may be added to the station detail screen, such as what other
facilities (bike racks, EV charging spots, car share spots) are available at the stations.
Train schedules could be added, so that users would know if the train will arrive at the
station early, on-time, or late. Station maps may be useful for users that are travelling to a
station they do not frequently use. If GO implements paid parking at some stations, this app
could be expanded to handle these payments. This app would be particularly well suited to
this improvement if paid parking is applied asymmetrically in an effort to shift riders from
congested stations to the under used stations.

