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1.0 INTRODUCTION 

 A recent eMarketer study has shown that non-voice mobile activity accounts for 20% of media 

time per day by US adults[1]. Mobile devices now carry very sensitive information such as private 

pictures, messages, and documents. Various surveys have also shown that majority of the users do not 

protect their phone with password[2][3]. As such, access to someone's physical device allows the 

attacker to view and steal all the private information stored on the device. 

 The progress in the field of pattern recognition using machine learning algorithms is constantly 

enhancing the security options allowed on mobile devices. Fingerprint or face recognition once 

available only through very complex and expensive systems is now available for mobile devices. In spite 

of the progress of both hardware and software support for intelligent security applications, mobile 

devices still rely heavily on fixed password-based authentication which can be inconvenient to use at 

home in case of a complex password, and not secure in case of a simple password.  

 This application attempts to provide users with an option to store sensitive information in the 

phone which will be guarded by intelligent security mechanisms on mobile devices that enables the 

right level of complexity depending on the context of the user. That is, depending on the user’s 

location, four different authentication mechanisms are proposed: no password, password, gesture 

recognition, and signature recognition. The application also aims to analyze the feasibility and ease of 

use of gesture and signature based authentication options. 

 

 

 

 

 

 

 

 

 

 

 



2.0 OVERALL DESIGN 

The following is the block diagram of MyLock: 

Gesture 
Manager

Signature 
Manager

File 
Manager

Password 
Manager

Encrypted 
Database

Location 
Manager

Authentication 
Manager

Setup Phase

Active Phase

Input 
Manager

Valid Locations

User

 

Figure 1: Block Diagram 

The application usage can be divided into two phases 

 Setup Phase: The user configures the application settings by entering his original gesture, 

signature, and defines safe zones. 

 Active Phase: The locations based authentication option is activated. To view and save sensitive 

information securely, the user has to authenticate in the application through the authentication 

option at that location. 

 

 

 

 



2.1 SETUP PHASE 

The following blocks are used to configure the application in setup phase: 

 PASSWORD MANAGER: The password manager stores the default password, which can be 

word(s) or numbers, into the database.  

 GESTURE MANAGER: The gesture manager is responsible for requesting user input gesture 

(using the phone) 5 times. As the user performs the gesture, accelerometer data is recorded 

and passed on to a filtering algorithm for noise removal. Using the K-Means clustering 

algorithm described later, valid clusters are recorded and stored into the database. 

 SIGNATURE MANAGER: Similar to gesture manager, signature manager is responsible for 

obtaining 7 samples of valid signatures from the user. They are then stored into the database as 

blobs. 

 LOCATION MANAGER : Obtains the GPS and Wi-Fi information to determine the location and 

allow the user to determine the authentication type (No Password, Standard, Gesture, and 

Signature) for that zone. Once all the entries are verified, store the information into the 

database. 

 ENCRYPTED DATABASE: Stores all password data during the setup phase and sensitive 

information entered in File Manager during the active phase. The database is encrypted with 

256-bit AES encryption so in case of a forced intrusion to the database, the information cannot 

be decrypted without the key. 

2.2 ACTIVE PHASE 

The following blocks are used in the active phase: 

 INPUT MANAGER: When the application starts, the input manager is activated and compares 

the GPS location and Wi-Fi information to the values stored in the database. It then asks the 

user for his/her authentication input. 

 AUTHENTICATION MANAGER: The user input is compared with the values from the 

database. In the case of gesture authentication, the input value passes through filtering and is 

then divided into clusters. The newly created cluster is then compared with the values stored in 

the database to determine user authenticity. 

 FILE MANAGER : Allows the user to create, update, and delete sensitive information. The files 

are stored in the encrypted database once the user saves the data. 

 



3.0 AUTHENTICATION OVERVIEW 

The following sections give a brief overview on the gesture and signature authentication algorithms 

used. 

3.1 GESTURE AUTHENTICATION ALGORITHM 

The motion gesture recognition manager is based on the process proposed by Schlömer et al. [x]. It 

consists of 4 main steps: 

 SIGNAL FILTERING (Setup Phase): The noise recorded by the accelerometer is reduced by 

first removing data with values less than 1.2G and then omitting the vectors if none of their 

components is too different from the corresponding component of their predecessor. 

 CLUSTERING (Setup Phase): The vector data is grouped in different clusters. This has the effect 

of finding significant points in the three-dimensional space through which the device passes 

during the motion gesture. 

 

 SEQUENCE PROBABILITY MODEL  (Setup Phase): In this step a probability model of the 

order in which the clusters found in the previous step are touched is produced using a Hidden 

Markov Model (HMM). 

 

 TESTING  (Active Phase): In this step, the user provides his/her gesture for authentication. The 

same signal filters are applied on the input and new vectors are grouped to the closest clusters. 

Then probability of the order in which the clusters are found is computed using HMM. This 

probability is compared to a threshold. If the probability is greater than the threshold, then the 

input gesture passes and the user is granted access to the application. 

3.2 SIGNATURE AUTHENTICATION 

The signature recognition system is based on the research from Martinez et al. [x]. It consists of four 

steps. 

 IMAGE PRE-PROCESSING  (Setup Phase): All the images are cropped to the smallest fitting 

square. Then, all the images are scaled to the dimensions of the smallest cropped image. 

 

 FEATURE EXTRACTION  (Active Phase): A black pixel count histogram is computed for the 

width and length dimensions. 



 

Figure 2: Feature extraction from signature 

 TRAINING  (Active Phase): A Support Vector Machine algorithm is trained with a linear kernel.  

It attempts to maximize the margin m between the separated dotted lines that distinguishes 

the correct signature (circles) from forgeries (squares) using support vectors (points touching 

the dotted lines). 

 
Figure 3: Support Vector Machine 

 

 TESTING  (Active Phase): The distance between the new signature and the trained signature is 

computed. If the value falls within the acceptance region (between dotted lines), then the 

signature is accepted.  



4.0 FUNCTIONALITY AND SCREENSHOTS 

This section shows the functionality of the application such as file saving, gesture setup, signature 

setup and location setup. 

4.1 WELCOME SCREEN 

The first screen requests the user to define a default password.  

 

 

 

 

 

 

 

 

4.2 FILE MANAGER 

The screen on the left lists the titles of 

information the user has recorded. It 

is the first screen the application 

prompts after the authentication 

step. 

● Press the “+” button will show 

go to the image shown on the right 

where the user can save his/her 

personal information 

● To delete a file, swipe the title 

to the left in the list 

● To access the settings of the 

application, press the “mesh” button 

  

  



4.3 SETTINGS 

When the user presses the mesh button, the Settings page is 

prompted. In this screen, the user can select the security mechanisms 

that he/she wants to customize.  

 

 

 

 

 

 

 

 

 

4.4 PASSWORD MANAGER 

 

In this screen the user can reset the application’s default password. 

 

 

 

 

 

 

 

 

 



4.5 LOCATION MANAGER 

   

The screen on the left shows location manager page where: 

 The user enters his/her location name, and sets GPS and/or Wi-Fi (SSID and MAC address) 

 A checkbox option that allows the user to define the name of the network as part of this 

security zone instead of MAC address (useful for networks with multiple routers) 

●  Authentication type that the users wishes to use for that location 

 

The screen in the middle shows the list of the locations set by the user. 

 To delete a location, swipe left 

 Clicking on a  location gives a description page as shown by the screen on the right 

  



4.6 GESTURE MANAGER 

 

In this screen the user can set the motion gesture that will be used 

for gesture authentication.  

1. The user must press the “Start Recording” button. The device 

will immediately start recording the motion gesture for the number 

of seconds specified. 

2. After entering the 5 gestures, the user must click the “Save” 

button from the action bar. 

 

At any time during gesture setup, the user can press the “Restart 

Training” button to restart the entire training process. 

 

 

 

 

 

4.7 SIGNATURE MANAGER 

Similar to the Gesture Manager section (4.6), the user is requested 

to enter seven samples of his signature  

At any time during signature setup, the user can erase his/her 

signature by pressing the undo icon (U-arrow) and cancel the 

training by pressing "X". 

  



4.8 UNLOCKING SCREENS FOR DIFFERENT AUTHENTICATION OPTIONS 

   

  



KEY LEARNINGS 

 We learnt that doing image comparison on contemporary smartphones can still be a memory 

intensive task. We constantly ran into out of memory errors while implementing signature recognition. 

Using a Google App Engine backend would have allowed us to implement various complex algorithms 

which would provide extra feature extractions for signature authentication. 

 The Apper originally proposed the signature recognition based on [5], which could not be 

implemented because of memory limitations. The paper did not recommend using histograms for 

signature comparison because of poor results. On the contrary, the team found that using histograms 

for comparison not only provides us with equally good authentication but also makes authentication 

more feasible on modern smartphones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GROUP MEMBER CONTRIBUTIONS 

Octavio Escalante (Apper) 

● Initial location-based authentication and security levels idea 

● Created initial mockups and final icons 

● Wrote signal pre-processing code and adapted the gesture recognition code from [6,7] 

● Wrote signature recognition processes in Python [5] 

● Tested and proposed the parameters for the machine learning algorithms 

● Worked with the programmers to translate the MATLAB  and Python code to Java 

 

Wen Bo Li (Programmer)  

 Developed the location-based authentication through GPS and Wi-Fi 

 Created a testing application for the Apper to obtain accelerometer data for MATLAB testing 

 Worked with the Apper in converting gesture authentication algorithms to Java 

 Tested and tuned various parameters in the pre-processing stage of gesture recognition 

 Implemented the encrypted database using SQL Cipher and updated the application UI 

 

Sanket Pandit (Programmer)  

 Designed and implemented the UI for the application based on the mockups 

 Integrated Google Maps API into the application 

 Created an independent signature input application for the Apper 

 Worked with the Apper in implementing signature authentication algorithms in Java 

 Tested and implemented various image pre-processing algorithms for signature recognition 

 

 

 

 

 

 

 

 

 



APPER CONTEXT 

 This application confirmed the capabilities of the machine learning algorithms used for motion 

gesture recognition. Similar accuracy results were achieved to those of previous research [6]. In 

addition, an extension of the algorithm from [6] consisting of running the training process 5 times and 

then testing new gestures using the 5 models generated previously was analyzed. The latter prevents 

the negative effects of random initialization of clusters during clustering and random perturbation of 

the transition matrix during the Hidden Markov Model training. The accuracy (1- False Rejection Ratio 

(FRR)) results for detection of a circle reported by [6], our application and the extended algorithm are 

shown in the figure below. This extension could be tested on the mobile device in the future. 

 

 Furthermore, this application also confirmed the limitations of this recognition method. 

Previous work [6] suggested that short or partial motion gestures recorded during the testing phase 

“can achieve relatively high probabilities”. This makes false positives a recurring problem that can also 

be observed on our application. As the thesis suggests, a method that may avoid this problem would 

be to model parts of the motion gesture. As a result, our application could provide the means to 

continue the research of this general problem that applies for other uses of Hidden Markov Models. 

 In addition, the motion gesture recognition algorithm implemented in our application could be 

used for different purposes than those of authentication. For instance, the mobile device can be 

trained using the algorithm we implemented to recognize when a user wants to pick up the phone, 

hang up, or open the messaging application using only motion gestures.  

 Our application also provided valuable insights regarding the signature recognition problem. 

Previous work [8] suggests that  psychological, mental, physical, and practical contexts of the signature 

recording as well as the time the signature is recorded; all affect the signature recognition. The latter 



was confirmed as, although we had achieved nearly 17.5% of FRR from same day and time signature 

training and tests, the FRR that obtained raised to nearly 90% when the device was trained at one day 

and then tested at a different day. The effects of this problem can be reduced by taking into account 

more variability in the trained signatures. However, this has two negative effects: (1) on usability, as 

the user would need to record a large number of signature samples to train the device, and (2) on 

security, as the false acceptance ratio (FAR) increases as the variability that the model admits 

increases. Thus, our application may also provide a starting point for further research of signature 

recognition on mobile devices. 

 Finally, it is important to note that the signature recognition algorithm implemented on our 

application could be adapted for other outlier detection problems. For example, the mechanism could 

detect when an irregular usage of the device is taking place. Further research could find more 

applications for the outlier detection mechanism implemented in this application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FUTURE WORK 

The team aims to implement a Google App Engine backend that will allow us to run complex 

algorithms in the backend and grab the results once the tasks are done. It'll also allow us to store more 

features from signature and gesture as memory on a mobile device is small and limited. 

Gesture Recognition works well for a long gesture; however, with small gestures the results are 

relatively inaccurate. We will divide the gesture obtained by the device into small sections and run the 

algorithm independently as recommended by [4]. 

Extensive testing on signature recognition is required to determine the optimum frequency at which 

the signature is recorded. Currently, the algorithm is strict in passing user input in phones with high 

frequency as we get more data and higher variability. 

 

SAMPLE RESOURCES 

Here is a list of sample resources we used in developing our application: 

Location Manager 

 Google Map API - https://developers.google.com/maps/documentation/android/  

Gesture Recognition 

 MATLAB code for gesture recognition [7] - www.creativedistraction.com/demos/gesture-

recognition-kinect-with-hidden-markov-models-hmms/  

 Jama Package for Matrix Operation - http://math.nist.gov/javanumerics/jama/  

Signature Recognition 

 LIBSVM (A Library for Support Vector Machines) - http://www.csie.ntu.edu.tw/~cjlin/libsvm/  

 Apache Common Math - http://commons.apache.org/proper/commons-math/  

 

 

 

 

 

https://developers.google.com/maps/documentation/android/
http://www.creativedistraction.com/demos/gesture-recognition-kinect-with-hidden-markov-models-hmms/
http://www.creativedistraction.com/demos/gesture-recognition-kinect-with-hidden-markov-models-hmms/
http://math.nist.gov/javanumerics/jama/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://commons.apache.org/proper/commons-math/
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