
 1

ECE 1778 - Creativity and Programming for Mobile Devices
February 2015

Programming Assignment P4, for Programmers

Threads and Databases

The goal of this assignment is to learn the how to offload non-user interface tasks into
separate threads, and to cover the basics of a simple on-device database.

1 Reading
Read the following sections from the course texts, if you are developing on Android:

i. Chapter titled “The WebView Widget” of the The Busy Coder's Guide to
Android Development, version 6.3.

ii. Chapter titled “Dealing with Threads” of the The Busy Coder's Guide to
Android Development, version 6.3.

iii. Chapter titled “SQLite Databases” of the The Busy Coder's Guide to Android
Development, version 6.3.

For iPhone: from Beginning iPhone 6 Development Exploring the iOS SDK by Mark,
Nutting, LaMarche and Olsson and the web, read:

i. Review the UIWebview Class – at this http://tinyurl.com/p5lzqnw.

ii. Lookup the method initWithContentsOfURL in the iPhone Documentation..
iii. Chapter 15 (“Grand Central Dispatch, Background Processing, and You”).
iv. Chapter 13 (“Basic Data Persistence”), the section on Using SQLite3.

2 Assignment

NOTE: As in previous assignments, when writing your code for this assignment, please
be sure to follow ‘Braiden Brousseau’s Guide To Quality Apps’ that was given as part of
Assignment P1. Part of your grade will be assigned based on following those guidelines.

You are to write an application that creates a small SQL database that is populated from
files located at a specified URL on the Internet. The main file will contain a list of names,
a short description of each person, and a local file path to picture of the person; an
example the file format is shown below. The program will then create a small dossier for
each person in the file, allowing the user to quickly learn about these people. Should the
user want to learn more about an individual they are able to launch an Internet search for
that person.

The application will have two primary functions: populating the database, and viewing
the dossiers. A separate thread must be spawned while retrieving data over the Internet
and populating the database. Here is the specification in more detail:

 2

Populating the Database

• The user should be able to enter a URL where the file is located, and this location

should default to the following string:
http://www.eecg.utoronto.ca/~jayar/PeopleList

• Upon pressing a button the app should download the file and populate a database with
its contents. This must be done on a newly spawned worker thread, and not on the
main UI thread. While this is happening, the UI should display some kind of ‘I know
you’re waiting’ visual – such as a progress bar or spinning wheel. When the database
is populated the first thread should send a message to the main UI process that it has
finished (and then it should terminate), and the UI should both stop displaying the
wait motif, and should emit a ‘toast’ (Android) or an ‘alert’ (iPhone) that indicates
the database is loaded. At this point the second button (‘Search’) should become
active.

• It should be possible to populate the database multiple times with different lists of
people to create a database containing the content of all the files combined. However
do not add duplicates of the same person.

• There should be a button that takes the user to the results section where the current
people in the database can be viewed. This should not be possible if the database is
empty or still in the processes downloaded a new file.

Viewing Results

• The dossier for each person in the database should be presented to the user. This
should include the name, picture and bio.

• If the user wants more information they should be able to launch a web browser
with a search query of the persons name. This can be done by launching the
default web browser of the device with some parameters. The official Google
programmatic search API is no longer useful as it only allows 25 searches a day.
As a result, for the purposes of this assignment, a Google search can be done by
simply loading a URL that looks something like
www.google.ca/search?q=this+is+my+search although feel free to use any other
search engine, or search method you find useful.

• The user should be able to return to the database population screen.

Viewing Results Special Instructions for iPhone Developers

At a minimum the user should be able to quickly load the next entry or the
previous entry but other than that you have the freedom to choose how you implement
the user interactions in this section of the app.

Viewing Results Special Instructions for Android Developers

When the search button is touched a new activity should be launched which
implements a ViewPager, which is a fragment-based android UI framework. (When
creating a new Android Studio project or Activity you can select “Tabbed Activity” and

 3

then select under navigation type “swipe views” for a code skeleton for this type of
interaction.

You will then create a single Fragment class with the layout for the dossier that

accepts input arguments. For each name in the database you will create an instance of this
fragment which will populate with the data for that person and associate it with a section
of the ViewPager. Thus as you scroll to the right from page to page you should see
successive dossiers. Pressing the ‘back’ button should cause the app to go back to the first
activity with the ‘populate’ and ‘search’ buttons.

File Format
 The file will have the following format with each entry on a new line. There is a
test file that can be viewed at ‘http://www.eecg.utoronto.ca/~jayar/PeopleList’ (but don’t
forget to make sure that it is possible to change the link).

Name1 <newline>
 Bio1 <newline>
 LocalFilePathToPicture1 <newline>

Name2 <newline>
 Bio2 <newline>
 LocalFilePathToPicture2 <newline>

Name3 <newline>
 Bio3 <newline>
 LocalFilePathToPicture3 <newline>

…

You can assume that a <newline> character delineates each piece string of information.
Note that the local path to file name for picture is on the same server and in the same
location as the file with the list itself.

For All Developers
1. Due date: Tuesday February 24th, 6pm, marked out of 10, 0.5 marks off every hour

late. Submit your solution on Blackboard portal, uploading a file under the
Assignment P4 item.

What to submit:

1. Android developers: a zip file containing your final Android application file
(.apk); use your student number as the filename. Also submit the complete eclipse
project directory in a separate zip file.

2. iPhone developers: you must submit the complete project directory, including
source, in a zip file. Use your student number as the filename. Please do your
development on the 6.1.1 version of the SDK, and make sure that you haven’t
included any files by reference. In fact, please test your submitted zip file before
sending it in.

