ECE 1778: Creative Applications for Mobile Devices

Lecture 2 January 14, 2015

Today

- 1. Logistics/Organization of Course & Project
- 2. Capabilities of Smartphones & Creative Applications
 - to get you thinking about ideas for applications
- 3. Continued introductions of Students & Idea Discussion

Logistics & Project Process

Websites & Lecture Postings

- If you missed the first lecture you can find it on first of the three course websites:
 - http://www.eecg.utoronto.ca/~jayar/ece1778/
 - Look under content
 - All lectures will be posted there
 - Keep an eye on the <u>Pepper</u> website for discussion boards
- Announcements will be sent through Blackboard

Sign up – sheets and ROSI

- If you did not last week, please sign up on the sign up sheets
 - Need to indicate name, dept, phone type, and if you are either:
- Apper: non-programmer, with expertise
 - From specific discipline that app will leverage in significant way
- Programmer: capable of learning new environment fast
- Can be both, which means you can program well <u>and</u> have expertise in some specific field

Recall: The Goal

- The goal of this course is to bring together people from different disciplines and to build an interesting/creative mobile application
- First Priority is to create those inter-disciplinary groups
 - Step 1: Two Programmers should find each other
 - Step 2: Form group with Apper
- Groups of 3 or 1 programmer will not be allowed
 - Too many, too few

From Last Week's Signup

Programmers		Appers		Both	
Credit	Maybe	Credit	Maybe	Credit	Maybe
29	9	24	3	3	2

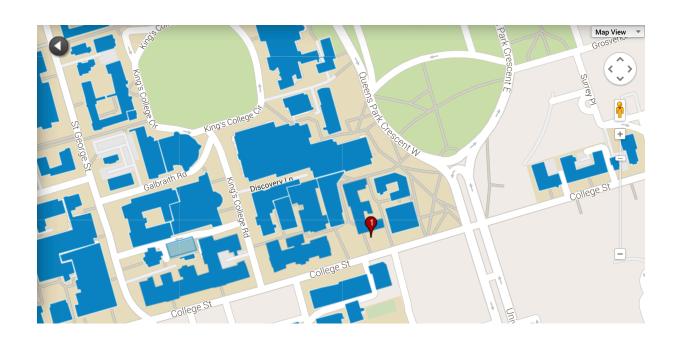
- Total of Yes & Maybe
 - Programmers & Both: 43
 - Appers: 27
- Submitted Part 1 of Assignments A1 or P1:
 - Programmers: 41
 - Appers: 26
- Registered on Blackboard/ROSI: 86

Are There Others Not Counted?

- 1. How many have no submitted Assignment 1 Part 1 Monday, but still intend to be in course?
- 2. How many people here are not registered on ROSI?

Note on Group Forming

- Need to be in a group to stay in the course!
- Each group must have one Apper
 - And two Programmers
- Currently, there may not be enough programmers
 - Programmer numbers may go down, as our review of their qualifications show that some might not be at the right level
 - We will be contacting some programmers shortly
- So, the onus may be on the Appers this year


Work for you Soon

- Programmers have introduced themselves on the Pepper website & given background
- Appers introduced themselves & described their field
 - Some have already suggested specific apps
- Today, you should look at these, to achieve
 - Groupings of programmers
 - Prepare for group forming next Wednesday night
- Feel free to make initial contact through pepper messaging
 - I suggest setting notifications on Pepper settings to be notified of messages and posts

Extra Meeting to Form Groups

- Next Week: Wednesday January 21st
- 6:30pm-8:30pm
- Fitzgerald Building, Room 103
 - 150 College Street
 - Will find a way to help make matches there

Once You Have Formed a Group

- Send email to:
 - Me (Jonathan.Rose@ece.utoronto.ca)
- In that email, Provide:
 - Names of all students and student numbers
 - Department & Field of each group member
 - Degree being pursued by each group member (M.A., Ph.D., M.A.Sc., M.H.Sc., M.Eng, M.S.A.C. etc)
 - Indicate who is Programmer, who is Apper and if someone is serving as both
 - Mobile platform you plan to do the project on
 - one of Android, iPhone (others require a special discussion)
 - if thinking about using Tablet
 - if you have your own device(s) you can use

Initial Thoughts/Pointers on Project

- Once you have a group:
 - Apper needs to give rough idea of discipline teach!
 - Start kicking around ideas need to meet!
 - Send me an email when you think you have something concrete that you can describe in a few sentences
 - you will need my approval for any topic
- Create a Plan; be sure to use Spiral/Agile approach
 - Begin by making some small version work, and grow, incrementally from there

Reprise: Rules on Project App

1. Subject Must be in the discipline of the Apper

- an idea to support research
- or something useful/worthwhile/interesting within the discipline
- Must leverage expertise that discipline
- 2. Must have sufficient technical depth
- 3. Should be a new idea
 - Can be variant of existing app if enough different

4. Must be a mobile application

Not something that could as easily be done on desktop/laptop

Project Stages

1. Forming Groups

Within 3 weeks; special get together Wed Jan 21 @6:30pm

2. Project Approval-in-Principle

- Done via <u>Pepper</u> website Discussion Group/email
- Due January 28th prior to class; Must have approval to proceed

3. Project Proposal/Plan

Document Due Feb 4th

4. Proposal & Plan Presentations

- February 11 & 12
- NOTE EXTRA LECTURE Thursday Feb 12, 6-8pm, FG 103

5. Spiral 2 & Spiral 4 Presentations

2: March 4/11 4: March 18/25

6. Final Presentations

Weeks of April 1 & 8

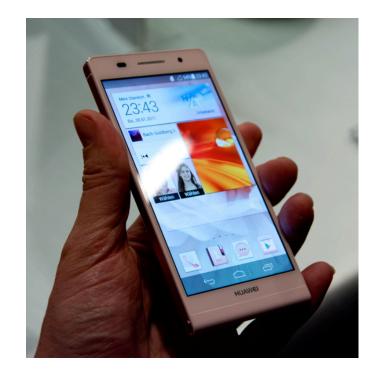
7. Final Report Due April 9th

Assignment 1 Part 2 Due Next Week

- P1 and A1 part 2 assignments due next week
 - 6pm, Tuesday January 20th
 - There will be one assignment per week after that, for 3 more weeks (in addition to project work)!
- Submit via Blackboard Portal under Assignments
 - Click on the assignment
 - Attach your file using 'Browse My Computer'
- Programmers: P1
 - Any issues/questions?
- Appers: A1
 - Any issues/questions?₍₁₆₎

What Programmers Should Be Learning

- With Assignment 1:
 - After downloading the various elements of the programming environment
- Java basics if not already known
 - http://en.wikibooks.org/wiki/Java_Programming/ Language Fundamentals
 - Or some basic Java Text
 - I liked John Carter, 'Using Java'
- Working within Android Studio
 - or, can choose to do everything in command/shell environment
 - lose some of IDE good features
- Running the basic environment
- Understanding File Types in the Android Project


What Appers should be learning & doing

- About capabilities of phones (today's lecture)
- What other apps in their field look like that have already been done
- Taking this, and thinking of ideas, or areas of ideas for new apps

Phones Available for Loan

- We have a number of Huawei Ascend P6 phones available for loan, for those who need them for assignments and the Project
 - Running Android 4.2
- Contact course TA to borrow:
 - Braiden Brousseau
 <u>braiden.brousseau@utoronto.ca</u>
 - You will take responsibility for the phones you borrow

Many thanks to for the donation of these phones!

Note for Apple iPhone/iPad Users

- Recall you must have a Mac to do this
 - Also, you must be sure that your project group has aligned itself under the apple banner
- The University of Toronto has signed up under the University development program, see:
 - http://mobile.utoronto.ca/build/ios
 - Contact <u>mike.spears@utoronto.ca</u> to sign up
- Allows free download to device,
 - which otherwise costs \$US 99
- Does <u>not</u> allow for app store distribution
 - But if do pay \$99 later, you will then be able to put on app store

Overview of Smartphone Capabilities & Example Applications

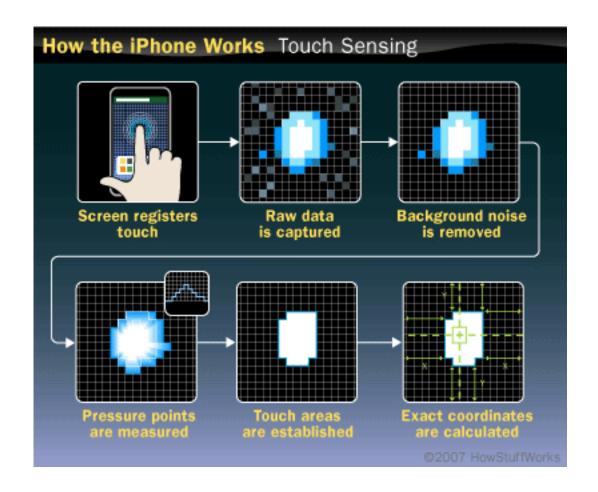
To Help your Creative Thinking about the Project

A Smartphone is ...

- A Computer small enough to unobtrusively carry, that
 - Is connected to the Internet knowledge & compute power
 - Can sense its environment in many ways
 - Can speak to its environment in several ways

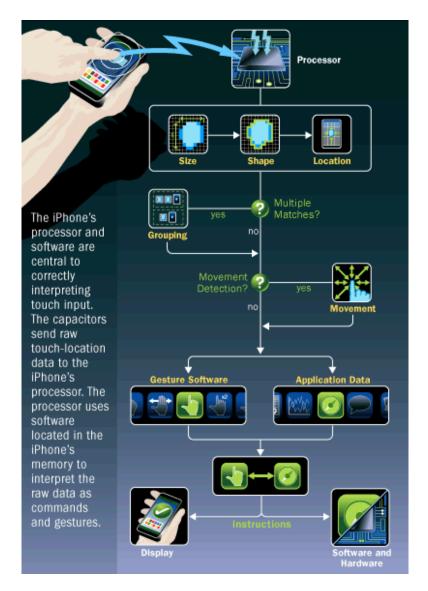
A Computer

- Will do whatever you tell it to do, automating any drudgery
 - and never complain
- Capable of sophisticated computation, including
 - analysis of its inputs
 - generating complex sound and images

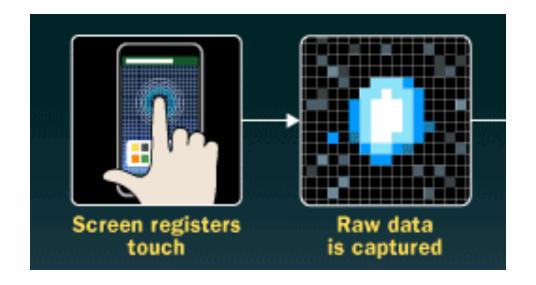


Inputs and Sensors

Touch Screen

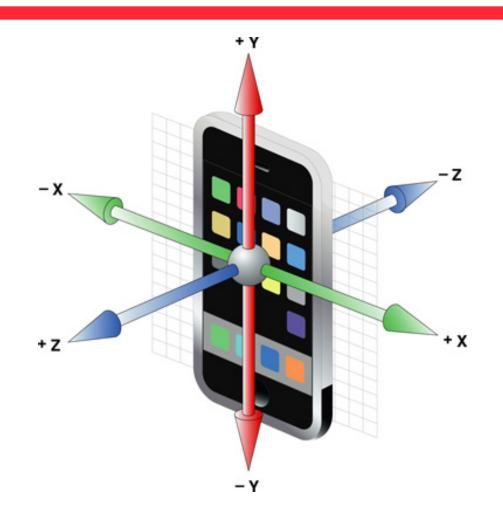

- The screen surface detects the touch of a finger
- Each touch can be turned into a specific coordinate

Touch Screen


- Coordinates can be turned into several different types of input:
- Gestures
- 2. Selection actions
- 3. Tap counters
 - Double-tap
 - Triple-tap
- 4. Two Finger touch
- 5. Three Finger Touch ...

Can Touch Screen Be More?

- Could this sensor be used to measure something about the finger?
 - Blood flow
 - Blood Pressure
 - Heart Rate
- Use for?
 - Medical Diagnosis
 - Lie Detector



This one is my personal obsession, but in general, it is good to think how to use sensors in novel ways

Accelerometer

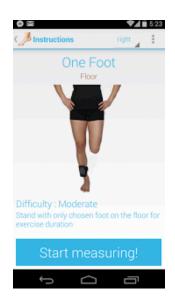
- Can measure acceleration in 3dimensions as shown
- Measured in m/s²
 - Get measurement in each dimension X,Y,Z
 - Remember your high school physics!
- Phone can give a 'reading' 100 times/s
- Use for gestures

Can Feel What the User is Doing

- Walking step counting
- Running speed measurement
- Can it tell something about the user's walking Gait?
 - "Implementation of an iPhone as a wireless accelerometer for quantifying gait characteristics"
 - LeMoyne et. al, 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31 - September 4, 2010

myAnkle

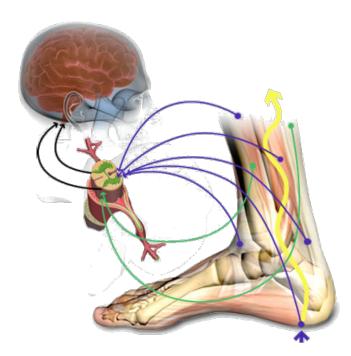
A Personal Physiotherapist for Ankle Injuries


Nirtal Shah, Ivan So, Lyndon Carvalho

Vivian Liu

Braiden Brousseau

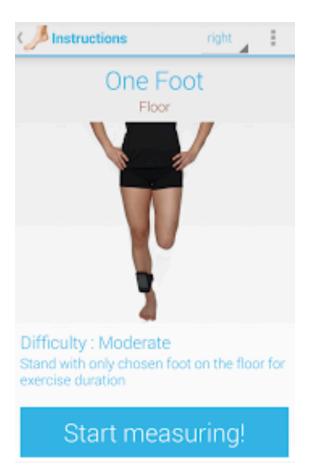
Nirav Atre


Babneet Singh

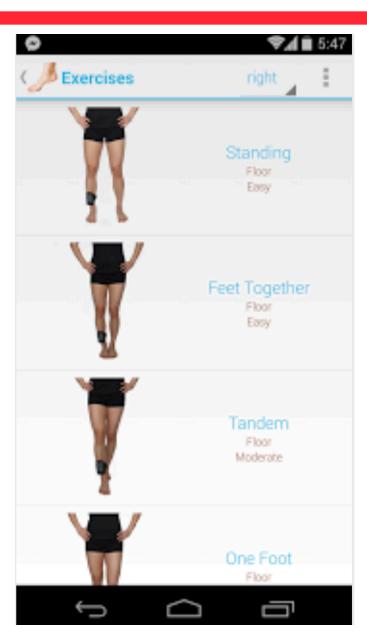
myAnkle helps with ankle injuries

- Injury causes a loss of ability to balance
 - Leads to increased chance of re-injury
- If you sprain or break your ankle, you should do physiotherapy to get this balance back
- Most people don't!
 - Physiotherapist is expensive \$100/hr

Usual Diagnosis & Treatment

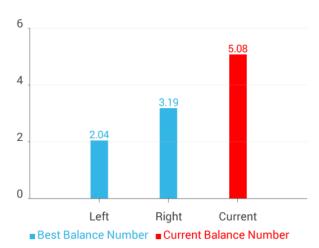

Physiotherapist 'measures' by watching you walk/balance!

very subjective


myAnkle - Objective Measurement

- Uses Accelerometer to measure ankle 'wobble'
 - When balancing, using the injured muscles
 - Just put phone in sock or strap to ankle:

A Selection of Exercises


Results

Standing

Floor (Right ankle)

Balance Number = 5.08

·-·/

Standing

Floor

Status

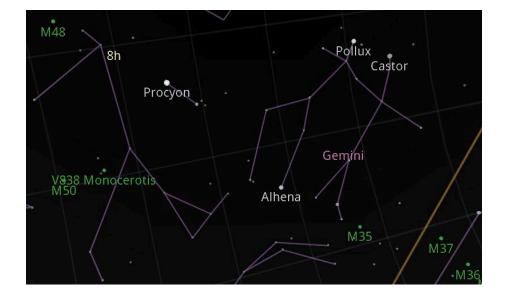
- Release to Google Play App Store Last February
 - Updated and improved in September
- App will only measures, does not prescribe
 - Collecting data for Nirtal Shah's M.P.H. research
 - Need to learn what the numbers mean
 - We hope to evolve it to prescribe
 - New version to be released soon
- Plan to continue working on this on both fronts
 - Software development & clinical understanding

My Anklet!

- Ankle strap with accelerometer inside
- Based on Metawear platform
- Undergraduate student Babneet Singh

Other Applications of Motion Sensing

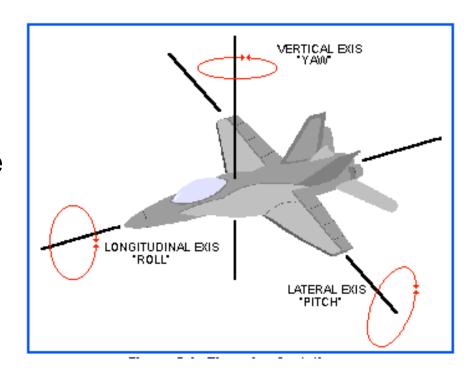
- Can tell if the phone is being shaken
 - Can use as an input
 - How sensitive is it?
 - Can it be used to measure Parkinson's tremors, in a medical application?
- Can detect if person fell down
 - could alert someone



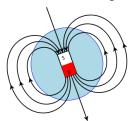
Motion Sensing with Accelerometer

- Gravity causes acceleration 9.8 m/s²
 - If the phone is not accelerating (i.e. you're not moving it)
 - can determine the orientation of the phone,
 - by looking at which dimension has the 'G':
 - X or Y or Z or some combination

Used by stargazer apps to know where you're looking in

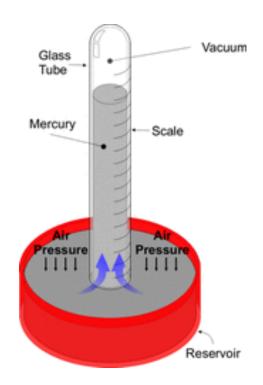

the sky ...

Gyroscope – measuring angular motion


- Gives: pitch, roll, and yaw
 - of phone, along X,Y,Z axis
- Rotation rate in radians/s
- Gives a better sense of the motion of the phone

Compass

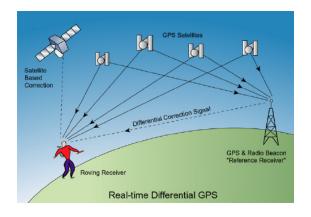
- Really a magnetometer
 - Can measure the magnetic field in 3 directions, X, Y, Z
 - Magnetic flux measured in micro-Tesla
 - Can use to make compass
 - Could also use as an instrument to measure presence of magnetic fields
- Where do magnetic fields exist?
 - Speakers, motors, screens, medical imaging, earth, big factories
- What are they used for?



Barometer

- Typical on Android & iPhone 6
 - Not Ascend P6
 - Measures atmospheric pressure
 - Change and rate of change gives an indication of weather
 - Measurement in hPA hectoPascals
 - 1 atmosphere = 1013 hPA
- Could use as altimeter
- What could crowd-sourced pressure measurements reveal?

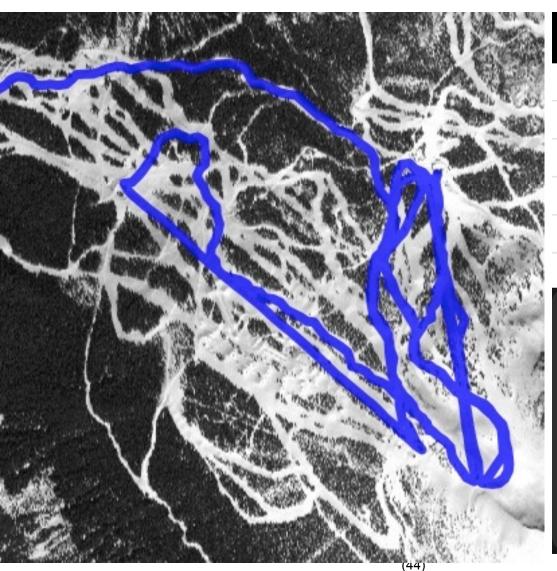
Weather Prediction Using Barometer


- Decreasing barometric pressure indicates storms, rain and windy weather.
- Rising barometric pressure indicates good, dry, and colder weather.
- Slow, regular and moderate falls in pressure suggest a low pressure area is passing in a nearby region. Marked changes in the weather where you are located are unlikely.
- Small rapid decreases in pressure indicate a nearby change in weather. They are usually followed by brief spells of wind and showers.
- A quick drop in pressure over a short time indicates a storm is likely in 5 to 6 hours.
- Large, slow and sustained decreasing pressure forecasts a long period of poor weather. The weather will be more pronounced if the pressure started rising before it began to drop.
- A rapid rise in pressure, during fair weather and average, or above average pressure, indicates a low pressure cell is approaching. The pressure will soon decrease forecasting poorer weather.
- Quickly rising pressure, when the pressure is low, indicates a short period of fair weather is likely.
- A large, slow and sustained rise in pressure forecasts a long period of good weather is on its way.

Global Positioning Satellite Receiver

GPS Receiver

- Determines location of phone in geographic coordinates
- Quickly accurate to within 100 meters, longer to do better
 - Does not work inside buildings
 - Has trouble when lots of buildings around
- Knowing where you are is incredibly useful in business; can provide context for assistive apps



Latitude: 37° 19' 54.0804"

Longitude: -122° 1' 50.6316"

Skiing in Whistler

November 25, 2012, 10:15 AM

ski vertical: 3,223 m

total distance: 23.04 km

ski distance: 15.72 km

speed-maximum: 52.99 km/h

speed-average: 20.61 km/h

duration: 02:06:31

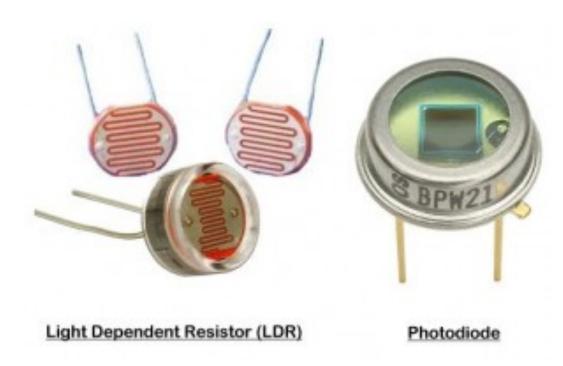
Location Services

- In Android, there are several 'Location Services' available that include the GPS
 - GPS uses a fair bit of power, can't have on all the time without draining the battery quickly
- The other two methods of locating are using:
 - 1. Cell phone tower triangulation
 - Wifi Network IP addresses of the routers

GPS

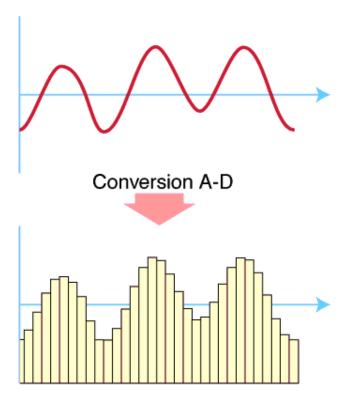
- Can also get the raw position of the satellites themselves
 - Someone in Aerospace might want to do something interesting with that

Altimeter


Using the GPS, can also determine the height of the phone

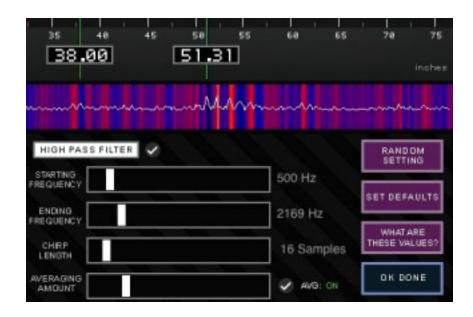
Ambient Light Sensor

- Used for measuring ambient light to set screen brightness
- Measures the light, in Lux
 - Across wide range of values



Microphone

- Converts sound into data
 - Microphone converts sound waves into voltage
 - Which varies over time
 - Circuit converts voltage into into digital values
 - Sound becomes a series of digital values
 - Get samples at 48K samples/s
 - Good quality sound!
- Sound Processing
 - aka Digital Signal Processing



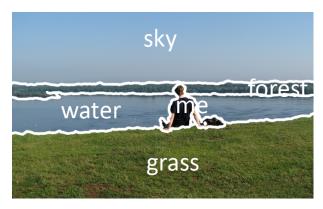
Microphone – Sonar Device

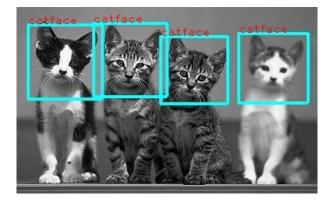
- Could make a good sonar with this!
 - Already been done
 - www.creativeapplications.net/iphone/sonar-ruler-iphone/

Sound Processing Example

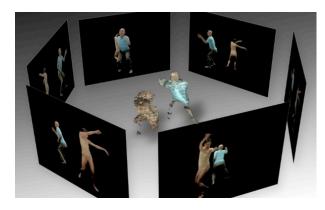
- Famous Shazam app
 - Listens to 15 seconds of song playing
 - Can tell you what the song is
 - Sends sound sample up to server to do this work
 - Lets you buy song
- Most processing is done on a server

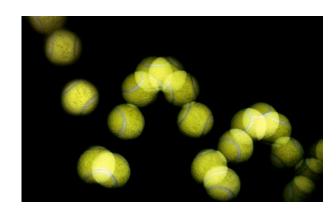
Back Camera


- Can record images
 - Large files with high resolution
 - 2MPixels 13 MPixels
- Can record video
 - ~ 30 frames/second of pictures
- Can we use it to "see things"?
 - Yes!
 - Computer Vision field
 - Difficult, slow



Computer Vision


Goal to 'see' the world in like people do


Image Segmentation

Object Detection

3D Scene Reconstruction

Motion Tracking Through Time

Computer Vision

- Computation to convert many pixels to information
- Computers 'see' in much the same way that people do
- Often too slow to do in real time, but not always
- There is some open-source software, OpenCV, which can do many things, but not very quickly
 - Has been ported to Android
- Braiden Brousseau's (TA) Master's thesis was about speeding up OpenCV on Android using an FPGA
 - He can help with using OpenCV, which now has fairly good ports to Android

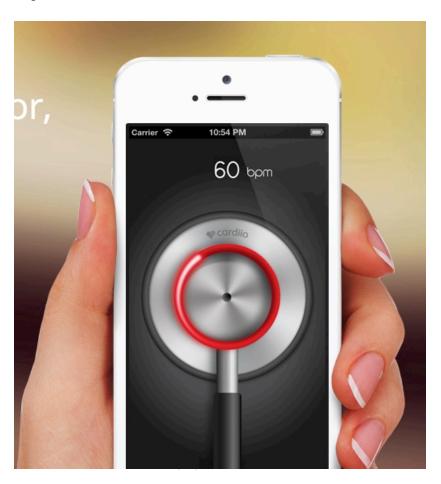
Front Facing Camera

- Allows for video interaction
 - Skype uses this
 - Lower resolution than back camera
- Can look at you and see how you're feeling

Eye Tracking

- The ability to know where a person is looking on a screen
- Where your eyes look conveys huge amount of information
- Can present scenarios and see what people look at
- Local research uses this to diagnose:
 - Depression
 - Memory Loss
 - Anorexia
- Many other things possible

Eye Tracking


- We have access to an eye-tracker + tablet
 - From a local startup, interesting in seeing application development
- Perhaps a Reading application?
 - Watch learner read, give help & support
- Other application in the stimulus, view-view response

Super Human Capability!


Cardiio – measuring heart rate by looking at colour changes in your face:

Proximity Sensor

- Can detect if phone is near to something, particularly the head
- Used to turn off touch screen when phone is to near to ear
- Simple Near/Not input
 - Doesn't give distance, yet

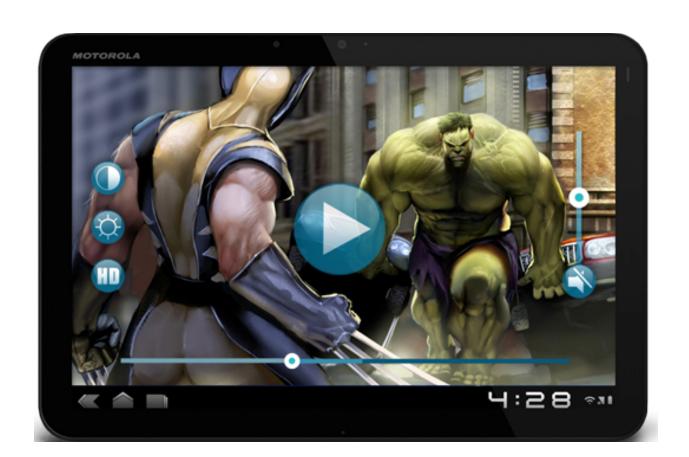
Humidity and Temperature Sensors

- Apparently, some Android devices have a humidity sensor, but it is for sensing if you've dropped the device in water, and just turns colour and is permanently triggered
- There is also a temperature sensor, but it is just for the battery, not the ambient temperature (yet)
- Many of the external wearables/connected devices we have can measure temperature

Output Devices

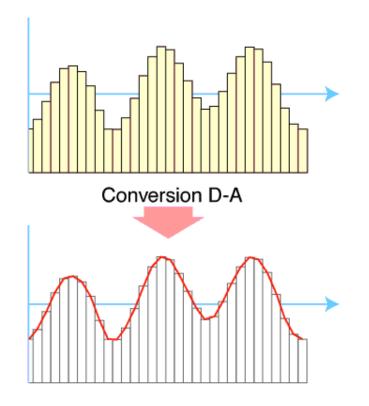
Hi-Resolution Screen

- Most recent phones have very high quality screens
 - Quality is the # & density of pixels
- Nexus 5
 - 1080x1920 resolution
 - 445 pixels per inch
- iPhone 5s
 - 750 x 1334 resolution
 - 326 pixels per inch
- Huawei Ascend P6
 - 720x1280 total resolution -312 ppi



Video Display Hardware

- Special hardware to display 30 frames/second video
 - Displaying video would have used up much or all of the processor's computational capacity;



Speakers/Audio Out

- Sound Output
 - Two speakers
 - Quiet one for ear
 - Loud speaker
- Play previously recorded files
 - Should be able to do text-tospeech
- Many possible sound filters
 - Auto-tune voices to make at right pitch
 - Make funny voices
 - Synthesized Musical instruments

Vibration Output

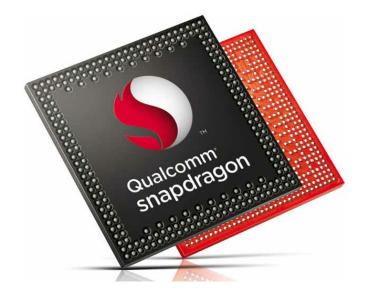
- Can create a short buzz
- Can control vibration pattern, duration and intensity
- This can be a significant output device 'haptic' feedback

Brilliant Use of Vibration: Cylcoramic

- Uses vibration rotate phone by itself
 - Takes video
 - Will take panorma
- Are there other uses for this?
- http://cycloramic.com
- Video

Camera Flash

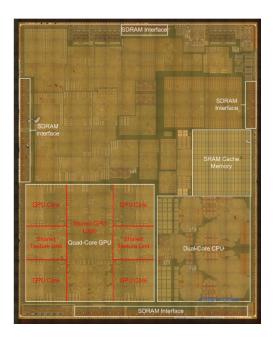
- Bright White LED
 - for taking pictures
 - Can light up a room
 - Signal someone
 - (transmit data?)
- Undergrad Design project:
 - Evoke red-eye effect on purpose
 - Is a picture of retina
 - To do eye-disease diagnosis
 - with computer vision



The Computer: Storage, Networking and External Devices

Computer

- What can a computer do?
 - Processors are powerful
 - Nexus S has 1GHz ARM
 Cortex A8 processor
- Many things!
 - Optimization
 - Search
 - Sort
 - Artificial Intelligence



The Application Processor

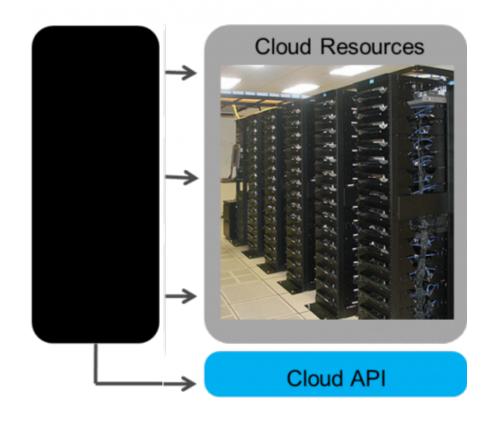
- iPhone 6 has dual core ARM v8 and 4x Power VR GPU
- Huawei device is a 4 processor core
- Fairly serious processing power; can bring to bear all of the knowledge, algorithms and software in many fields
 - On-the-spot Optimization, Search, Machine Learning

Storage Capacity

- Local storage of 2 to 128 Gbytes of permanent storage
 - Flash-based solid-state disk
- Can load many databases locally onto the device
 - Dictionaries, no problem!
 - Maps
 - Phonebooks
 - Location Services

Network – LTE/3G/Wifi: Gateway to Internet

- Have at least 2 ways to talk to the Internet
 - Local WIFI
 - Cellular data networks
 - LTE is faster and better than Wifi
- Connection to more computation and storage
- Connection to other phones



The Cloud Helps Too

- Many apps need 'backing' website/ database
- Provides phone with:
 - Communication to other people
 - Data
 - Backup
 - Information from Internet

Bluetooth Connection

- Connect to a whole class of external devices, wirelessly
 - earphones
 - small spy cameras
- Could be important way to add other devices without physical connection
 - Make use of phone's capabilities without holding it

Aside: Sensors are Leaving the Phone

A Sensor for Every Application

Cost: \$169 for base, more for each specific sensor

Additional Node Sensors End-Units

THERMOCOUPLE

Thermocouple can measure surface temperature temperatures in liquids, semi-solids- foods, and meats, for quality control, and temperature monitoring.

\$75

click here to buy or learn more

OXA

With a NODE OXA gas module installed your smart device becomes a super sensor. Each OXA gas module detects one of the following gases: CO, NO, NO2, Cl2, SO2, and H2S.

\$149

click here to buy or learn more

CO2

NODE + CO2 is a sensor module for the NODE+ bluetooth sensor platform. The CO2 module measures the Carbon Dioxide level of the air around the sensor.

\$149

click here to buy or learn more

BARCODE

We're proud to announce new NODE+Barcode sensor module! NODE+Barcode can scan any item, keeping track of your inventory, pricing and availability.

\$99

click here to buy or learn more

Or, build your own:

1/0

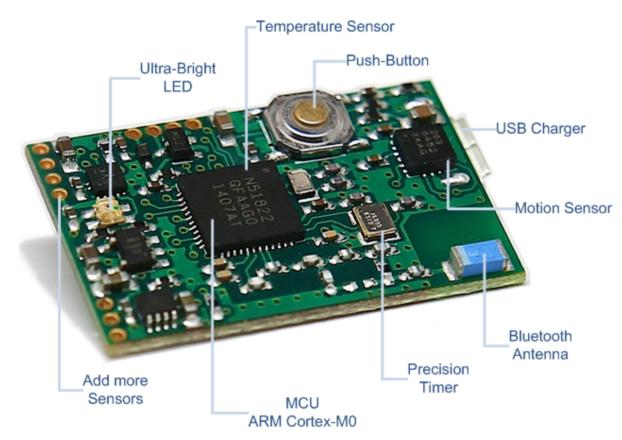
The i/o Module allows users to connect different sensors, lights, and buttons, to access the POWER of NODE in their own projects.

\$25

click here to buy or learn more

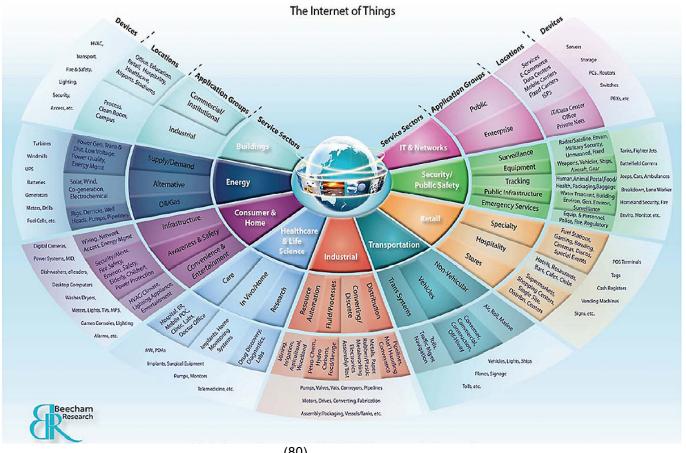
Texas Instruments Sensor Tag

- Similar to NODE
 - Accelerometer, gyroscope, magnetometer
 - Ambient Temperature
 - IR Temperature
 - Air pressure
 - uglier
- But: Only \$25!
- I have several of these for use in the course
 - Compatible with iOS and Android
 - Needs Android 4.3 or above for low-energy Bluetooth


Button TrackR

- Put in wallet, purse, knapsack
- Phone alarms if get separated
- Remembers where it was last seen (GPS)
- If someone with App walks by it, tells you

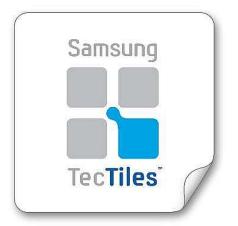
Metawear



Comes with ready-to-use software for Android and iOS

Relates to Industry's Latest Buzzword

■ The Internet of Things



Near-Field Communications (NFC)

- Another radio for very fast connection
- for payments
- recognition of 'tag'
 - When go home can walk past desk, brings up calendar
 - When dog goes by, gives reminder of stuff to do with dog

Using All These & More

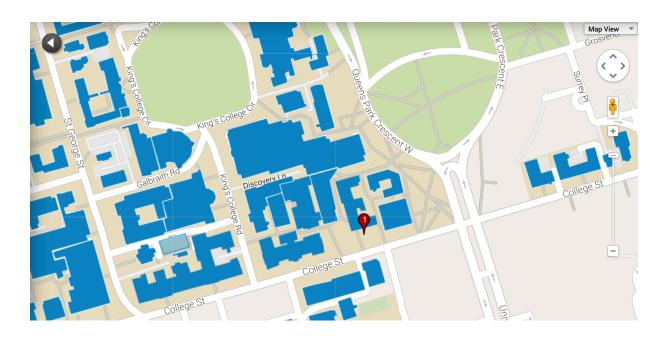
- Come up with something interesting in your field
- Make it work!

Introductions, continued

To Help in Project Group-forming

Introductions, Continued

- Last Day, some of the class introduced themselves
- Today, let's try to make sure all of the appers have introduced themselves
 - Please take notes to keep track of people who you think might be compatible partners
- Today look at submissions of Programmers & Appers on Pepper website
- Next week, we'll try to put people in some categories to help you explore matches.


Introduce Yourself, Round 2

- 1. Name
- 2. What discipline you work in & degree sought
- 3. Taking Course for Credit yes, no, maybe
- 4. Part time or full time
- 5. What your thesis topic is (if doing thesis)
- 6. If you work, where & what you do.
- 7. Why you're taking this course
- 8. What kind of phone you're carrying
- 9. Apper: What idea, if any yet, you have for an app
- 10.Programmer: What you're interested in doing app on.

Next Week: Meeting to Form Groups

- Wednesday January 21st
- 6:30pm-8:00pm
- Fitzgerald Building, Room 103
 - Will create categories

