

IntelliWork

ECE1778 Final Report

Due Date: December 14, 2016
Word Count: 2020 + 433 = 2453
Specialist: Jiawei Du (998711327)
Programmers: Louis Tsui (998995057), JiaRen Bai (998884685)

1

Table of Contents

Introduction 2

Statement of Functionality & Screenshots from App 3

Overall Design 6

Reflection 9

Contribution by Each Group Member 9

Specialist Context 10

Course Website Permissions 12

Reference 12

2

1. Introduction

Chemical manufacturing plants are complex systems that contain various types of
machines. These machines act together to form a unit functionality, and one single
machine failure can have catastrophic consequences for the system as a whole. To
mitigate risks, machinery operators, who are directly involved in the production
processes, conduct unscheduled inspections aside from routine tasks. They are
required to check on the physical conditions of equipment on the plant floor on a
regular basis to ensure the plant is running normally. According to the interview with
operators from a toner manufacturing plant, the majority of machine failures are
identified during unscheduled inspections. Therefore, assisting them to identify
symptoms of equipment in distress conditions and to take actions to minimize those
impacts, is essential to improving and sustaining asset reliability.

Unscheduled inspection is a critical but also challenging task. Currently, operators
have limited access to key operating data when they are conducting unscheduled
inspections on the plant floor. The lack of information access inhibits them in making
informative decisions, and as a result, operators commonly experience high mental
workload especially during emergent conditions. If an abnormal symptom is
identified, operators report the incident and request assistance verbally via radio.
However, verbal communication is not effective in describing equipment conditions
as compared to using photos and videos. In addition, all documentation of inspection
outcomes are completed manually. Not only are hand-written reports prone to
human errors, the manual processes are also labour intensive and time-consuming.
The unstructured inspection process poses high execution variability, exposing the
system to potential hazards of catastrophic consequences. Given these challenges,
both management team and operators agree that there is a need for an appropriate
tool to support inspection related tasks.

The goal of the app, IntelliWork, is to assist plant operators to inspect production
processes in a more systematic and efficient way. The app will provide a guideline
that standardizes unscheduled inspection processes. It will also provide
functionalities that help operators to identify, communicate, and document incidents
during inspections.

3

2. Statement of Functionality & Screenshots from App

The app consists of several screens that contain various functionalities to support
unscheduled inspections. End-users of this app are mainly machinery operators,
team leads, and engineers. Screenshots are taken from IntelliWork’s video demo.

The menu screen (Figure 2.1) lets users choose types of inspection tasks to
complete. The “Quick Start” button contains major core functionalities. Upon
selecting “Quick Start”, users see three tabs.

The Map tab (Figure 2.2) displays the building floor plan, where the user is located.
The map view can be zoomed in and out by pinching and panned using short
swipes. The map also draws several dots. A single blue dot tracks the user’s position
and movement. The other dots represent equipment: equipment nearby users is
highlighted in green while equipment out of range is shown in grey. In this demo, we
considered and set “nearby” to be within five meters of the user’s position.

Users can also add equipment locations on the map to match with any newly
installed or relocated equipment on the floor. They do so by performing a long press
on the area where the equipment is located, and this brings up a dialog that requests
information inputs (Figure 2.3).

The Equipment Info tab (Figure 2.4) displays a list of equipment nearby the user
(equipment is displayed in green dots). Tapping on a list entry brings up the

Figure 2.1 Menu screen Figure 2.2 Map tab Figure 2.3 Adding equipment

4

particular equipment’s data (currently only a placeholder image is displayed) (Figure
2.5).

The Add Log tab (Figure 2.6) contains a form to fill out incident details: the
equipment related to the incident, title, description, personnel to be involved, and the
option to take a photo for additional information (Figure 2.7). Upon pressing the “Add
Log” button, the incident is uploaded to a remote server and made available for other
users. The corresponding equipment of this incident is marked with a wrench icon on
the map (Figure 8).

Upon selecting “Inspection Checklist”, the user sees various inspection checklist
templates based on floor plan locations (Figure 2.9). Each checklist template
contains a list of items (questions and tasks) to help users summarize inspection
outcomes systematically (Figure 2.10).

Figure 2.4 Equipment info tab Figure 2.5 Equipment details Figure 2.6 Add log tab

5

The warning icon on the menu bar represents the “Incident Logbook” that contains
three tabs.

The “Unresolved” tab contains unaddressed incidents (Figure 2.11). Each incident
on this tab contains a summary of details, a timestamp, and a popup menu with
additional options. The popup menu has two more options: “Mark as Done” flags the
incident as completed and “Get Details” brings up a screen titled “Full Detail” which
shows a standardized incident report(Figure 2.12).

Figure 2. 7 Photo of incident Figure 2.8 Incident on map Figure 2.9 List of checklists

Figure 2.10 Checklist Figure 2.11 Unresolved tab
incident

Figure 2.12 Incident details

6

The “Completed” tab contains incidents that have been resolved via the
aforementioned “Mark as Done” button. The popup menu contains a “Revert as
unresolved” button instead of “Mark as Done”. This feature allows the user to undo
changes if an incident is marked as done by mistake.

Finally the “Checklist” tab contains a historical record of checklists that have been
submitted. Each list item shows the type of the checklist and its status (whether
completed or not).

Figure 2.13 Completed tab Figure 2.14 Checklist tab

7

3. Overall Design

The block diagram is divided up into the application front end and the server back
end. The front end (Android Application End) is responsible for mapping
functionalities and the back end handles data storage.

The Home Menu block consists of several buttons that allow access to different app
features.

The Logout block handles cleaning up various temporary code objects created
during the application run before exiting.

The Free Route Inspection block displays a floor plan of the building the user is in
and provides a list of equipment. It relies on the Map Analysis block to determine
nearby equipment and have their details accessible.

The Add Log block contains the standardized form to document details of an
incident, which then will be sent to the remote server. After an incident is created, the
Add Log module communicates to the Map Analysis block to update icons; this
means the equipment with the incident reported will have a wrench icon added on
the map.

The Logbook block records and displays inspection results, which includes incidents
and checklists. This module synchronizes with the Map Analysis whenever there is a
data change. For example, after an incident is set to “completed”, the Logbook

Figure 3.1 Block diagram representing software structure

8

notifies the Map Analysis to erase the corresponding wrench icon from the map.
Likewise, when an incident is reset to “unresolved”, the Map Analysis is notified to
redraw the wrench icon for that equipment on the map.

The Map Analysis block contains the logic to analyze the user’s position and display
information in their surroundings. Equipment list detection, for example, is done by
consistently computing the distances between the current position and the
equipment location. The equipment within the range is then filtered out and
displayed. Other examples include changing equipment dot colours or drawing a
wrench icon (unresolved incident) on an equipment dot. We relied on two software
libraries to implement this functionality: IndoorAtlas and David Morrissey’s
Subsampling Scale Image View (SSIV). IndoorAtlas is a navigation technology
based on geomagnetic positioning and a mapping process is required to set up the
system. SSIV is to support displaying the map.

The Checklist block provides users a systematic way of inspections. The module
consists checklist templates; each template has several fields such as questions and
tasks to complete.

The Local Storage block represents equipment, incidents, and checklists that are all
saved as Realm database objects. The module extracts necessary information by
querying Realm based on users’ requests.

The Database Storage block is a Firebase Database (Figure 3.2) that backs up
information from the local Realm Database; this way, data is made available to
multiple users. Upon any data change, the update is saved both locally and
remotely. So, all users will have the latest data access.

 Figure 3.2 Remote Firebase server database schema

9

4. Reflection

Technical
First and foremost, we learned how to build a sizeable Android project and to
integrate third-party libraries into an app of our own. We gained experience with
looking up online documentation and resources when implementing features and
debugging issues. Utilizing third-party software libraries sped up development
progress and freely choosing those libraries was an opportunity typically not
experienced in previous course assignments.

We should have carefully planned out the database design beforehand. Later
additional schema changes were rather time-consuming as we tried to merge those
changes with existing infrastructures; the process also created several bugs to fix. It
would be a good practice to design a database scheme beforehand that considers all
potential app components and synchronization mechanisms. This way, programmers
could also implement interfaces to facilitate synchronization process between local
and remote database storage.

Non-technical
First, we learned how to narrow down the app scope, i.e. what the app does and
why. This became a clear guideline when defining use cases of an indoor positioning
technology. We also learned how to make a pitch when demonstrating our app.

We should have visited the plant more frequently to gather feedback. From our plant
revisit in November, we received highly positive comments and valuable feedback
for future improvements. But due to time constraints, we were only able to implement
the checklist functionality. Other suggestions are discussed in the section “Future
Work”.

5. Contribution by Each Group Member

Collaboration by all team members:
● Discussed the contents and slides for each presentation and practiced with

other members
● IndoorAtlas setup: floor-plan mapping

Individual Contribution:
Louis Tsui
● Implemented the majority of the user interface (UI)

○ Logbook and Quick Start activities
○ Tabs
○ Associated fragments (except the Checklist)

10

○ Dialog fragments
○ Action bar

● Connected UI components to Realm objects which involved querying Realm
and accessing the retrieved objects’ attributes

● Developed the core mapping functionality (drawing of the map and blue dot of
the user) which was heavily based on the examples provided by IndoorAtlas

● Led the debugging effort and part of this process involved searching for
documentation online to see what design patterns might resolve our issues

● Coordinated with JiaRen to manage a git repository for development
● Testing the app in the presentation environment was done collaboratively

JiaRen Bai
● Developed equipment list detections under the Map Analysis module and the

Checklist module
● Developed equipment storage and data synchronization mechanisms under

the Local Storage and Database Storage modules
● Coded equipment and incident icons, which would be concurrently displayed

on the map
● Debugged code modules and tested IntelliWork to ensure reliability

Jiawei Du
Project Development:
● Defined main objectives of the app based on interviews with operators (end

users) during the site visit to a toner manufacturing plant
● Came up with the ideas for indoor positioning; defined use cases of indoor

positioning system in a chemical plant setting
● Designed basic app functionalities
● Designed user interfaces and created mockups of a high-fidelity prototype

using Moqups.
Communication:
● Explained the context of my research field to help programmers better

understand the motivations and goals of the app
● Revisited the plant to presented our prototype to operators and collect their

feedbacks

11

6. Specialist Context

I am from the Cognitive Engineering Laboratory at the University of Toronto. My
research group, in partnership with ABB Canada, seeks to better understand the
application of adaptive automation to complex systems. The goal of my research
project is to support inspection-related tasks through adaptive mobile application.
The ECE1778 project contributes directly to my research project because the
prototype our team designed and developed in this course can be used to examine
the effectiveness of adaptive automation in process industries.

This prototype, Intelliwork, was designed by using Feigh et al’s Adaptive System
framework [1]. According to the framework, an adaptive system allows both users
and the system to change its level of automation depending on the context. An
adaptive system contains two parts: 1) an adaptation mechanism that categorizes
ways a system can adapt its behaviours and 2) a trigger mechanism that describes
how adaptive systems sense the current situation and decide when and how to
change. My research aims to investigate Spatio-Temporal Trigger on Information
Content Adaptation, i.e. how time and location can be used as adaptation triggers to
change information that system presents to the user. Several simple adaptive
features have been implemented in the design. For example, the color of equipment
markers (information content) will be adapted according to user’s position (spatio
trigger), and only information of nearby equipment (spatio trigger) is accessible from
the “nearby equipment list” (information content). By highlighting the nearby
equipment that is more likely to contain relevant information to user’s tasks, the
adaptive application is expected to increase task efficiency by reducing time that the
user requires to process information. As a result, users are expected to improve their
performance and experience less mental workload.

From industrial perspectives, the successful deployment of this adaptive mechanism
has the potential to fundamentally change the way chemical plants are operated. In
the past, operating data is only accessible in the centralized control room, meaning
that the entire production process can only be monitored and controlled remotely
from the control room. Disconnected from the physical working environment,
operators often suffer from high cognitive workload because they have to reply on
abstract information on the display to make sense how well the plant is functioning.
In the advent of mobile and sensing technology, mobile devices present a compelling
opportunity to break the spatial segregation between the plant floor and control room
by delivering system data to the point of work. In particular, adaptive mobile
application will be exceptionally useful because it can work together with human
operators as an intelligent agent to help them complete the tasks more efficiently.

12

7. Future Work

Technical Work
The team would like to enhance the code module that displays up-to-date equipment
data in terms of tables and graphs based on equipment types. As plant operators
have suggested, mobile equipment information access would be greatly appreciated,
so this feature can facilitate their inspection process.
The team also wants to include more checklist templates that will be designed based
on users’ requirements; this feature may improve users’ inspection efficiency.

Currently, the synchronization process involves converting data from Realm to
Firebase databases and is handled by loosely structured code. We would like to
refactor the code to implement an interface that communicates between the two
technologies. Doing so would make it easier to organize future code in case of any
database schema changes. Extending the code base would be simpler and less
prone to bugs.

Research Work
This app will be used as the prototype in specialist’s research experiments to
examine several design concepts of adaptive automation in the context of process
industries.

8. Course Website Permissions

Video of final presentation: Yes
Report: Yes
Source code: No, the research sponsor ABB would like to keep code closed-source.

9. Reference

[1] Feigh, K. M., Dorneich, M. C., & Hayes, C. C. (2012). Toward a Characterization
of Adaptive Systems A Framework for Researchers and System Designers. Human
Factors, 54(6), 1008-1024.

