
1

ECE 1778 – Creative Applications for Mobile Devices
January 2021

Programming Assignment P2

Advanced UI, File Storage

The goal of this assignment is to learn how to build more complex user interfaces. The first
section of this document gives you the specification of how the software should behave.
Please note this assignment is a significant amount of work and we strongly suggest
that you begin working on it as soon as possible.

1 Assignment Specification
NOTE: before starting this assignment, please go back and read ‘Braiden Brousseau’s
Guide To Quality Apps’ that was part of Assignment P1. Your assignment should obey
those guidelines, as part of the grade will be assigned for fulfilling those requirements.

This assignment will build on your work in Assignment P1. It will add a new feature that
allows users to take, post, and view photos. These photos will be saved to the mobile
backend (implemented using Firebase) and will be displayed in an Instagram-like “feed.”

1.1 Application Feature Specification

The PhotoSharing app should have the following features, building on those created in
assignment P1:

1. Registration Page: taken from P1 and expanded

a. The display picture taken by the user should be saved in Firebase Storage.
b. A reference to the location of the display picture in storage (a URL or a path

within the storage bucket) should be saved in the “users” document within
Firebase Cloud Firestore.

2. Profile Page: take from P1 and expanded
a. The top of the page still displays the user’s display picture, user name, and

bio, as in P1
b. Beneath the display pic, name, and bio, the profile page will display a

scrolling list, 3 columns wide, of thumbnails of all of photos that have been
‘posted’ to the service by the currently logged in user. Clicking on a
thumbnail displays photo in full screen. Photos should be listed in
chronological order, from newest to oldest.

c. Somewhere on the Profile Page there should be a button to launch the
camera so that a photo can be taken. Once taken, the picture should be
shown to the user and confirmation requested. Once confirmed, the photo
should be “posted”. Posting a photo saves the photo in Firebase Storage. A

2

reference to the photo’s location in Firebase Storage should be saved in the
Firestore database.

An example of the Sign-In, Registration, and Profile Pages are shown below. Note that
these are only suggestions for how you may choose to lay out and style the app
features/elements specified above.

1.2 Additional Application Behavior

In addition to all the behavior specified above, the application should also behave in the
following ways:

1. The profile page for a particular user should only show photos belonging to that
user, and not all the photos belonging to all users in storage/database. Therefore, all
photo references in the database should also store the associated user’s unique
identifier (UID, see FirebaseUser.getUid() in the Firebase Authentication
Reference). In addition to the UID you should also store the timestamp of the photo
so that images can be shown in the correct chronological order.

3

2 Firebase

2.1 Note on Storing Images
A production-quality app would store images in multiple resolutions and cache local copies
of images as they were downloaded. For example, a 100 x 100 pixel image would be used
for thumbnails and the original resolution when greater detail is requested. Doing this is an
optimization outside the scope of these assignments. We recommend not storing the highest
resolution images your camera provides but instead to downscale them to 1024 x 1024
pixel resolution. Make sure to also encode the images into a compressed format, such as
jpg or png.

This is necessary because if you store everything as super-high resolution images and then
load them 10 or more at a time on the profile screen you may run into a problem: during a
long day of development you might get close to the daily bandwidth limits for the Firebase
storage free tier. Downscaling the images before uploading will help keep your usage
within the free tier limits.

2.2 Note on Firebase Firestore and Storage
While reading the app specification you may have been wondering why it is necessary to
both save images in Storage and save a reference to the image’s location within Storage
into the Firestore database. This is because the Storage API doesn’t allow you to simply
list all the files that exist there – in order to get a reference to a file in Storage you need to
know where it is beforehand. The workaround here is to maintain a piece of information
(the file path) in the database for each image you upload to storage. Then, when you want
to download or delete images from storage, you simply query the database for all image
paths and then use those to get StorageReferences. Once you have the StorageReference
for an image file, you can download or delete that image from Storage.

2.3 Suggested Organization for Data in Firestore Database
The “photos” collection is similar to “users”. Each “photo” document has the UID of the
owner’s Firebase User account, a reference to the location of the actual picture in Firebase
storage, and the timestamp for the photo. Note that the key for the “photo” documents can
be auto generated by Firestore in this case, by calling add() instead of set() when
adding these photo documents to the photos collection. A visualization of this “photos”
collection is provided:

4

Finally, if you were to use this layout for the Firestore database, you would need to organize
your Storage bucket into folders for each user. (The name of the folder would be the user’s
UID). Inside each folder, there would be one file called “displayPic.jpg”, which would be
that user’s Display Picture, and all other photos just need a unique name. In this example
given, we use the timestamp since it is highly unlikely that a particular user will take two
photos at the exact same time. Note that this makes the “timestamp” field within the
“photo” document redundant, since you can just parse the timestamp out of the storageRef
field.

2.4 Tip for building the Profile Page UI

We strongly suggest that you create the grid of image thumbnails within the Profile page
using a RecyclerView with a GridLayoutManager (the equivalent in iOS is a
UICollectionView). In a later assignment you will be asked to create another photo feed
with a slightly different layout, and doing so will be much easier if you can reuse your
RecyclerView + GridLayoutManager with slightly different parameters. For android users,
avoid putting your RecyclerView inside a NestedScollView, doing so will cause every
element of the list to be rendered even when not being displayed on the screen. This can
cause dramatic performance issues as the size of the list grows, especially when loading
images.

Note that it is perfectly OK for the view element at the top of the profile page (which
contains the user’s display picture, username, and bio) to stay fixed at the top of the screen
and not move as you scroll through the grid of photos. This behavior is not consistent with
Instagram but is fine for the purpose of these assignments.

3 Grading and Submitting

Important Note on Marking:
8/10 marks are assigned to meeting the above specifications.
2/10 will be based on the quality of the User Interface and User Experience.

5

Please refer to Braiden Brousseau’s guide to quality apps to understand the
guidelines for good quality user interface and user experience.

Due: Tuesday February 9th, at 6pm, marked out of 10, 0.5 marks off every hour late.

Submit your zip file through the Quercus Assignment P2 page in this course.

1. Android developers: a zip file containing your final Android application file (.apk);
use your student number as the filename. Also submit the complete Android Studio
project directory in a separate zip file.

2. iOS developers: you must submit the complete project directory, including source,
in a zip file. Use your student number as the filename. Please do your development
on the 12.3 version of the SDK, and make sure that you haven’t included any files
by reference.

Please test your submitted zip file before submission.

