ECE1786 Fall 2022 Assignment 4

Assignment 4: Text Generation and Question Answering with Trans-
formers

Deadline: Tuesday November 15, 2022 at 9:00pm

Late Penalty: There is a penalty-free grace period of one hour past the deadline. Any work that
is submitted between 1 hour and 24 hours past the deadline will receive a 20% grade deduction.
No other late work is accepted.

The goal of the fourth assignment is to gain familiarity with the nature of auto-regressive language
generation using Transformers, through the lens of the Question-Answering (QA) task. You will
also fine-tune a model from Huggingface pre-trained models, with their easy to use software, to do
QA on a part of the well-known SQuAD dataset. You will also explore of the generated probabilities,
and zero-shot prompting of generation.

This assignment must be done individually. The specific learning objectives in this assignment are:
1. Become familiar with some forms of the Question-Answering problem.
2. Download and use pre-trained QA models with Huggingface Transformers.
3. Fine-tune a QA model using a Huggingface-based Transformer.
4

. Learn about the generation (decoding) process and viewing the generation probability tree,
as well as the effect key generation-controlling hyperparameters.

5. Learning about zero-shot generation.

What To Submit

You should hand in the following files to this assignment on Quercus:

e A PDF file assignment4.pdf containing answers to the written questions in this assignment.
You should number your answer to each question in the form Question X.Y.Z, where X is
the section of this assignment, Y is the subsection, and Z is the numbered element in the
question. You should include the specific written question itself and then provide
your answer.

e Code files as specified in individual questions.

1 The Problem Setting of QA (3 points)

There are many different ways that the QA problem is posed. Here we focus on the setting spec-
ified by the SQuAD [2] dataset. The paragraphs below show three QA problems sampled from
the SQuAD dataset, with minor modifications. For each question listed below, provide the answer
(using your own brain, not the computer) based on the context given and the question. For each
answer that you give, also write a short reason that justifies your answer. [3 points]

1. Item ID 5709a2923ed30961900e843d0
Context: Unlike the Spanish milled dollar the U.S. dollar is based upon a decimal system
of values. In addition to the dollar the coinage act officially established monetary units of

https://rajpurkar.github.io/SQuAD-explorer/

ECE1786 Fall 2022 Assignment 4

mill or one-thousandth of a dollar, cent or one-hundredth of a dollar, dime or one-tenth of a
dollar, and eagle or ten dollars, with prescribed weights and composition of gold, silver, or
copper for each. It was proposed in the mid-1800s that one hundred dollars be known as a
union, but no union coins were ever struck and only patterns for the $50 half union exist.
Question: What is the US dollar based upon?

2. Item ID 56fa3d788f12f319006300fFf
Context: Age, diameter, height, radial growth, geographical location, site and growing con-
ditions, silvicultural treatment, and seed source, all to some degree influence wood density.
Variation is to be expected. Within an individual tree, the variation in wood density is often
as great as or even greater than that between different trees (Timell 1986). Variation of spe-
cific gravity within the bole of a tree can occur in either the horizontal or vertical direction.
Question: Which part of a tree can have vertical or horizontal variation in its specific gravity?

3. Item ID 56e102b7cd28a01900c6742b

Context: Canonical jurisprudential theory generally follows the principles of Aristotelian-
Thomistic legal philosophy. While the term “law” is never explicitly defined in the Code,
the Catechism of the Catholic Church cites Aquinas in defining law as “...an ordinance of
reason for the common good, promulgated by the one who is in charge of the community”
and reformulates it as “...a rule of conduct enacted by competent authority for the sake of
the common good.”

Question: What school of thought serves as a model for canon theory?

2 Performing QA Using a Pre-Trained Model (6 points)

In this section you will use a pre-trained, online model to answer the above three questions, so
no coding is involved. You will use the deepset/roberta-base-squad2 pre-trained model from the
huggingface model hub. If you follow that link you will see the ‘Hosted inference API’ on the right
hand side, which you should use to answer these questions:

1. For each of the three question answering problems in Section 1, copy the Question and the
Context into the model interface and obtain the resulting generation. Report the results, and
comment on how the model outputs compare to your answers from Section 1. Create your
own context and question to query this same model, and report the answer. Is it correct? [2
points]

2. Read the pipeline tutorial from Huggingface to see the most straightforward way to use
models from the Huggingface model hub. Review all of the tasks that are supported by the
pipeline framework, and list those that take in text as input. For each of those, give a one
line description of what it does. [2 points]

3. The model page for deepset/roberta-base-squad2 has a section labelled “In Transformers”
that uses the pipeline method, and it can do exactly the same thing that you just did in
part 1 of this Section. Review and copy that code, make sure you can run the three example
QA problems. Find a different model that can perform inference at least 25% faster (in wall
clock time) than roberta-base-squad2 that can be used in that same pipeline, and see if it
gives the same answers - report which model you chose, its inference time (and the time for

https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/docs/transformers/pipeline_tutorial
https://huggingface.co/docs/transformers/v4.23.1/en/main_classes/pipelines#transformers.pipeline
https://huggingface.co/deepset/roberta-base-squad2

ECE1786 Fall 2022 Assignment 4

roberta-base-squad2), and whether the answers were comparable to roberta-base-squad2 or
not. [2 points]

3 QA by fine-tuning a model on SQuAD (12 points)

Read this tutorial to learn how to fine-tune an existing model on a specific question-answering
dataset.

1. Answer the following questions:

(a) If you do not wish to upload the newly trained model to the Hugging face hub, is it
necessary to execute the notebook_login line of the notebook? [0.5 points]

(b) Give a single line of code that will print the 5th data point in the training split of the
SQuAD dataset? [0.5 points]

(c) Some input examples may exceed the maximum input length of the model. The code
in the tutorial truncates inputs that are greater than a maximum length, as part of the
tokenizer. It can split the input into two segments, one segment which fits and another
segment that is what remains. When calling the tokenizer, which argument causes the
tokenizer to return both the segments after truncation? If we want to have the two
segments have some overlap (just in case the text containing the answer is truncated),
which argument should be used to control the extent of overlapping? [1 point]

(d) How are input examples that are not the same length handled in this code? [1 point]

(e) In the function prepare train features(), are the start_positions and end positions
referring to the token indices or the character indices? [0.5 points]

(f) Which gradient descent optimizer is used in this code? If we want to change the opti-
mizer, how is this done? (Hint: look at the TrainingArguments and the Trainer) [1
point]

(g) What is “checkpoint saving”, and why is it done? How often is checkpoint saving done
in the model training in this code? [1.5 points]

(h) How is the performance of the model evaluated in this code? [1 point]

2. Fine-tune the models, using only 1/10 of the training dataset, with your choice of hyper-
parameters. Note: You need to enable the colab’s GPU runtime for fine-tuning, and keep the
page open for around 20 minutes, so the colab runtime does not disconnect. Try a few different
hyperparameters and report the best set, but don’t spend too much time here. Report the
following;:

(a) Total runtime of a single training run.
(b) Performance.
(¢) Your choice of hyper-parameters.

)

(d) Find 3 examples where the QA model gives an incorrect answer. Suggest one or more
reasons why the model failed on the examples.

Include the notebook (or python code) as you modified it in your submission. [5 points]

https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb

ECE1786 Fall 2022 Assignment 4

4 Exploration of Text Generation Parameters and Probabilities
(12 points)

Review the Huggingface documentation on performing auto-regressive text generation, which you
encountered a little in Assignment 3, which can be found here. In particular take a copy of the
code titled Multinomial Sampling.

Make sure you can run that code, which downloads a (medium-sized) GPT2 model and uses it to
generate text given the specific input prompt.

The model.generate function (which has the same goal as the generate function you worked with
in Assignment 3) has many parameters, including temperature and top_p as described in class.
These parameters influence the sampling of the output probabilities which are used to select each
word in turn in the auto-regressive generation. There are two other parameters to become familiar
with which control how many tokens are generated: max_length and stopping _criteria. There
are also parameters like repetition penalty which penalize repeated words, and reduce their
occurrence if the penalty is set above 1. You can review all of the parameters of the generate
function here.

Consider the following input sequence: “It is important for all countries to try harder to reduce
carbon emissions because”. In the following steps you are asked to both generate subsequent words
from that input context using that GPT2 model, and to explore the probabilities that are generated.

1. To get a sense of the influence of some of the generation parameters, explore at least 10
combinations of temperature and top_p to generate a maximum of 30 tokens using auto-
regressive generation with the GPT2 model. Comment on how the generation differs across
the range of parameters that you have selected. You must choose your own range, and you’ll
have to do some exploration to do that; you are free to explore other parameters if you wish.
[5 points]

2. Modify the code to output the probabilities of the each word that is generated. You’ll need to
set these two generate parameters:return_dict_in_generate=True and, output_scores=True,
and extract the probabilities that come in the returned dictionary one call at a time. Provide
a table that shows these probabilities, similar to Assignment 3. Comment on the probabilities.

[2 points]

3. Write new code that generates the probability tree (like the one drawn on the board in Lecture
6) using the treelib package that you can find here. Generate the tree for the above sequence
as input, providing the top 3 probabilities for each word position, as far as is practical to see.
(You’ll have to apply some common sense here to visualize the tree). Comment on the what
you see in the tree. Is the tree affected by the top_p parameter or the temperature parameter?
Why or why not? Submit your full code that runs the generation and builds and outputs the
tree in the file A4_4_3.py [5 points]

5 Question Answering using zero- and few-shot prompting with a
pre-trained language model (7 points)
To answer this part of the assignment, you should sign up for the OpenAI GPT-3 [1] playground

at here: https://beta.openai.com/playground, and you will get a certain amount of tokens for free.
Use the default generation parameters.

https://huggingface.co/docs/transformers/v4.23.1/en/main_classes/text_generation
https://huggingface.co/docs/transformers/v4.23.1/en/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.example-2
https://huggingface.co/docs/transformers/main_classes/text_generation
https://treelib.readthedocs.io/en/latest/
https://beta.openai.com/playground

ECE1786 Fall 2022 Assignment 4

As discussed in class, recent advances in large pre-trained language models have shown impressive
capabilities. These models can do question answering in the form shown above using essentially a
zero-shot approach, and they also have some amount of embedded knowledge that allows them to
answer a question without context. However, it sometimes takes some careful 'prompt engineering’
to be successful. Here are some questions to guide your exploration of the very powerful GPT-3
model:

1. Using the second QA problem from Section 1 (ID 56fa3d788f12f3190063001f), find a way (i.e.
engineer the input) to get GPT-3 to answer this question (with all the information given) as
best it can. Then, pose the same question to GPT-3 without giving it the context. Compare
and contrast the results to the one you obtained in Section 2. [2 points]

2. As example of using GPT-3 as an all-purpose tool, consider the following problem that arises
in automated psychological counseling. We would like take observations/statements of fact
that a counselor may perceive about a patient, and turn it into a “more gentle” suggestion
that is less direct than simply stating the fact, and would be easier for a patient to take in.
For example, the observed fact might be:

You don’t like being judged by your family.

and the softer version might be:

You might not like being judged by your family.

You are to “design” a prompt for GPT-3 that takes direct statements of fact and turns
them into such “softer” statements. Here is one more example of the original statement:
You’re having trouble getting focused. Try experimenting with different prompts, and
the generation parameters (Temperature, top-p, etc.) to see how well you can make such a
converter, for this example and one of your own choosing. For both of those examples, report
the best 4 results, and show how you achieved them. (i.e. by saying what the prompt and
parameters were). [5 points]

References

[1] Brown et. al. Language models are few-shot learners. 33:1877-1901, 2020.

[2] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

	The Problem Setting of QA (3 points)
	Performing QA Using a Pre-Trained Model (6 points)
	QA by fine-tuning a model on SQuAD (12 points)
	Exploration of Text Generation Parameters and Probabilities (12 points)
	Question Answering using zero- and few-shot prompting with a pre-trained language model (7 points)

