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Introduction

As the movie industry has bloomed and developed during the past century, an increasing amount
of movies are delivered and published at a fast pace. The role of movie retrieval or
recommendation tools is becoming not only more important but also necessary. Even though
many movie information database websites(e.g. IMDB) and video streaming service
platforms(e.g. Netflix) allow users to search for the desired films/TV series, they are mostly
functioned based on predefined input format such as title, genre or regions that users have no
flexibility to input arbitrary plots as searching queries. The goal of our project is to construct a
content-based recommendation system that accepts informal queries like: “time travel and
observe the history” and suggests top movies with the most similar plots. To understand the user
inputs and its semantic meaning, natural language processing techniques such as transformers are
applicable to this project.
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Background & Related Work

1. Content-based Recommender Using Natural Language Processing (NLP)[1] introduced a
content-based recommender that recommends movies based on the cosine-similarity of
tf-idf scores in terms of user input movies. The recommender will find similar movies
based on user input.

2. Transformers4Rec: A flexible library for Sequential and Session-based
recommendation[2] introduced a package ‘transformers4rec’ designed by Nvidia Merlin
which is a session-based recommendation aimed at capturing sequential patterns in users
browsing and might help to anticipate the next user interests for better recommendation
using transformers. However, since we are building a content based transformer based on
given contents instead of sessions, this could be a qualified reference for our project.



Data and Data Processing

The initial dataset “IMDBS5000[3]” is downloaded from kaggle, which contains around 5000
samples with features like “Title, Overview, Genre, etc”. To better generalize our non-sentence
features like “genre” or “release year”, we construct sentences to embed these features as
enriched sentences such as “The genre of the movie is action”, “This movie was originally
released in 2000 ” to give them richer meanings instead of just words and numbers. Since we
expect more comprehensive contents of movie storylines and maps the movie complete sentence
(overview + storyline + enriched sentence) to reviews, the storylines from IMDB and reviews
from Rotten Tomatoes are crawled and combined with initial information. Considering that data
is injected from diverse resources in different formats, we establish a data pipeline to filter
movies released year before 1970 which contain less reviews, clean the text format using regex
to remove irrelevant symbols, select top three crews instead of all, and fetch required information
from json documents. Notably, reviews are highly subjective contents from viewers. Learning
from both positive reviews and negative reviews should be differentiated. Thus, classified
positive and negative reviews are separated and grouped as pairs with complete sentences
respectively as training data. As our model is evaluated based on its hand-labeled results,
train-test splits are not necessary for our training phase and more data in the training phase
reduces the data bias and variance while recommending to users.

There are 1728 final training pairs corresponding to 923 movies with 11559 appropriate reviews
(6 per movie before filtering and 12 per movie after filtering) and 4504 storylines added in total.

movie_id title tags review sentiment sentiment score grouped_reviews

0 19995 Avatar  In the 22nd century, a paraplegic Marine is di... positive 1.0 Cameron's epic can still thrill the audience w..

1 19995 Avatar  In the 22nd century, a paraplegic Marine is di... negative 0.0 Five hundred million dollars wasted .. The leve...

2 49026 The Dark KF?"SQQQ Following the death of District Attoney Harve. . positive 10 It still might not be quite the conclusion we ..

3 49026 The DarckiaM  Eoliowing the death of District Atiormey Harve... negative 0g EVenwilha twisting mystery and numefous new

4 49529 John Carter  John Carter is a war-weary, former military ca... positive 1.0 L850 SN (B 8 e SN U B2 Mg[f_h_

1723 2292 Clerks Ceovemencetlivdectinieie ks Banle a};nd negative 0.0 ..the films inherent deficiencies are general...

1724 14337 Primer  Friends/fledgling entrepreneurs invent a devic... positive 1.0 Time fravel may provide the pamrigg):ﬁé!

1725 14337 Primer  Friends/fliedgling entrepreneurs invent a devic... negative 0.0 The storytelling is so confusing and the multi...
1726 126186 Shanghai Calling /Nen ambItious New York atiomey Sam is S‘Qim negative 00  Astaris born in Daniel Henney in the predict

1727 126186 Shanghal Calling When ambitious New York attorney Sam is setnt positive 10 Daniel Henney is personable as Sam, and Eliz.?

1728 rows = 6 columns



Architecture and Software

The design of our architecture will accept users arbitrary sentence inputs and return the top most
relevant movies based on movies complete sentences using minimization of cosine-similarity.
The complete sentences and reviews pairs are training data converted to embedding spaces using
SBERT (sentence-BERT([4]) model (all-mpnet-base-v2[5]) which contains the configuration of
BERT-base, with 12-layer transformer, 12 attention heads, hidden size of 768, token embedding
dimension 512, and a total of 110 million parameters. The model is pre-trained MPNet on a 160
GB corpus and maps sentences to a 768 dimensional vector space. Besides, a pooling layer is
applied to reduce the dimensions of the hidden layer by averaging the outputs of neuron clusters
at the previous layer.
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The final loss function is OnlineContrastiveL.oss which will minimize the distance between the
embedding space of complete sentences to positive reviews and maximize the distance between
embedding space of complete sentences to negative reviews. To separate the sentiment groups, a
sentiment classifier, t5-base-finetuned-imdb-sentiment[6], containing 220 millions parameters,
32128 vocabulary size, 512 token embedding dimensions, 12 layers transformer and 12 attention
heads, is imported to split reviews into positive and negative groups.

In this way, our model output will be closer to positive reviews and far away from negative
results. As the training phase shown below, the OnlineContrastiveLoss is used to update our
model through backpropagation and the epochs and batch size are 10 and 4 respectively with
default learning rate 2e-05 due to limitation of computation power.
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During the recommendation phase, the users can input anything as sentences which are
converted into sentence embedding(y). Then the embedding(y) is compared to all other movies'
complete sentences using minimization of cosine-similarity which yields the top most similar
movies as our outputs.
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Besides, a Ul interface is constructed using Gradio embedding our model to the webpage and
allowing users to input queries and observe results.



Typing below and then click Run to see the output.

Query Recommendations:

Return movie titles only?

Run

Baseline Model

After data cleaning and preprocessing, the baseline model supports the same functions as
transformers, which accepts users arbitrary sentence inputs and returns the top most relevant
movies based on input queries. Our baseline model mainly uses tf-idf (term-frequency and
inverse-document-frequency) scores to vectorize all movie information such as plot, genres, etc
and form the tf-idf matrix. The recommender will iterate through the matrix of vectors and find
the top most similar movies vectors given user input queries using minimization of
cos-similarity. Since tf-idf vectorizers have less concern about the sentences ordering but
concentrate more on tokens, all relative information could be added at tails. Besides, n-grams are
used for lengths of 1 to 3 in order to expand our corpus size and extract more combinations of
tokens.

Baseline Model

Movie tf-idf Matrix
plot
+ Movie 1{Movie 2 [Movie 3 | ... |User Query
Movie Term 1
genra
- Term 2
Movie Term 3
Review keywards
+
Movie
Release year

Baseline Model Recommendation process

tf-idf matrix
from O to V

cos-sim(u, v)
for all u and v

Top most similar
movies

User Input Query (u) Min(cos-sim(u, v))




Quantitative Results

To acquire quantitative results, each of our group members came up with five informal queries,
then manually label each of the top 10 movie recommendations as “T”’(relevant) or “F”(not
relevant). Next, we exchange queries and do the labeling work again. We measure both our
results separately with three different metrics and the three averages are taken as our final
quantitative result.

The three highly correlated metrics we used are: Precision at K, Averaged-Precision at K and
Mean Averaged-Precision at K.

“Precision at k” or “P@k” is the fraction of relevant items in the top K recommended results, it
lets us know how many relevant movies among all movie recommendations can our model
generate if the order of recommendations returned does not matter. Most precisions for the top
ten returned movies are above 0.6 which are relatively good for single queries. Even though P@k
cannot summarize the overall performance of our recommender, it better illustrates how
individual queries results.

Precision at k for Transformer
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Precision at k Baseline
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From above P@k values for all 10 queries, transformer model with most P@k values larger than

0.5 at k=10 generally performs better than baseline model with most P@k values smaller than
0.5 at k=10

“Average Precision at k” or “AP@k” is the sum of the Precision@XK for different values of K
only where the Kth recommendation is a relevant recommendation, then divide the sum by the
total number of relevant items in the top K results.

1
APQN = Ez{jzlp(k:)

Where m is the total number of relevant returns
P(k) = 0 if kth element is irrelevant

AP@XK gives higher ranking recommendations more weights than the lower ranking ones and
performs well under recommendation situations where users mostly focus on top suggested items
especially for movies. We can observe this characteristic from the change of AP@K values for
Transformer in the chart below. Query 10(dark green) has the most relevant returns at the head
and irrelevant returns at the tail, which yields a high overall AP@k sores. However, Query
5(black), having the most relevant returns at the tail but irrelevant returns at head, results in an
overall low AP@k score. Comparing the baseline with the transformer model, the overall



performance of the transformer model yields higher AP@k scores.
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Chart and Table of “AP@k” for Baseline
“Mean Averaged-Precision@k” or “MAP@Xk” is the mean of the average precision at K metric
across all instances in the dataset. P@k and AP@k are used to evaluate the performance of a
single query, while MAP@k evaluates the general performance of the recommendation system
for all queries.
With MAP@K shown as the thick red line in the above Transformer chart with data values added
on lines, our model achieves a MAP always above 0.85 for all queries. However, the MAP
values for the baseline model fluctuate between 0.5. The higher the MAP score, the more
accurate the model is in its suggestion. Given the trend of MAP line of transformer plot, most of
our recommendations are relevant and the top five recommendations fit the user queries really
well.

Qualitative Results

The qualitative result of our model is shown in the figure below: we created a simple user
interface that allows users to input any descriptions, the top 10 recommendations will be
displayed. Users also have the choice of asking for more information such as a short description,
the movie’s genre, etc.

The below query results are pretty good. Intuitively, most movies are directly related to dinosaurs
and even if the movies do not include dinosaur elements, they are still relevant to other
characteristics in the query such as education, 3D or entertainment.

Typing below and then click Run to see the output.

2

uery Recommendations:

3D Top notch education and entertainment for ['Walking With Dinosaurs', 'The Good Dinosaur',
dinosaurs "Jurassic World', 'Jurassic Park’, 'lce Age', 'How to
Train Your Dragon 2', "How to Train Your Dragon’, 'The

Ret ie titl 2 Secret of Kells', 'Finding Nemo', ‘A Sound of Thunder']
eturn movie titles only?

Run

Title-only result



Typing below and then click Run to see the output.

Query Recommendations:
3D Top notch education and entertainment for ['Walking With Dinosaurs: Walking with Dinosaurs 3D
dinosaurs is a film depicting life-like 3D dinosaur characters set

in photo-real landscapes that transports audiences to
the prehistoric world as it existed 70 million years
ago. The film is based on the 1999 documentary
television miniseries Walking with Dinosaurs,
produced by the BBC. Walking with Dinosaurs 3D is
being produced by Evergreen Studios, the company
that produced Happy Feet, and it is was released on
October 11, 2013. The genre is Animation Family

Return movie titles only?

Adventure . The movie was released in . 2013 The
charactistics of the movie are dinosaur 3d . nan’, 'The
Good Dinosaur: An epic journey into the world of
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Result with full information

The below query results are ambiguous and hard to define its relevance. Most movies are directly
related to history changes. But considering its completeness, only the first results are relevant to
time travel.

Typing below and then click Run to see the output.
Query Recommendations:
time travel to see the change of history ['A Sound of Thunder', '300", 'Terminator Genisys',

'Red CIiff', 'Downfall’, "1911", "Winter in Wartime', 'The

. Ret e titl 2 Monuments Men', 'Time to Choose', 'Centurion’]
) Return movie titles only?

Run

Example of ambiguous results

Discussion and Learnings

The model performance is surprisingly well based on the results from both quantitative and
qualitative results, especially the high values of MAP. One thing we noticed during the
development of our model is that because of how informal queries have vague meanings
compared to solid-feature queries, people could interpret them differently. This means no matter



how accurately our model performs, personalized preference setting should be considered for
users. Even if this is a common situation for a pure content-based recommendation system
without considering user preferences, it could be certainly improved by combining the
session-based or collaborative-based methods if we start again by shifting some concentration
from NLP applications to results improvements and availability out of this course. Besides, a
more comprehensive dataset would be much useful that more movies can be trained on instead of
filtered out without enough information The best usage scenario for our model could be
embedded into the search engine of a movie website, we are allowed to not only apply some hard
constraint to the searching result(e.g. Language, R-rating), but also adjust the model based on the
user's choice of recommendations.

Individual Contributions

Zijian
1. Implemented the web-scraping codes to acquire data from rotten tomatoes, IMDB
Crawled data from rotten tomatoes
Clean and preprocess sources data to combine results
Experimented with various methods to improve model performance
Fine-tuned transformer models with various loss functions and model structure
Constructed enriched sentence to complete sentences
Hand-labeled both baseline and transformer results
Generate output plots
Wrote the Gradio implementation of the user-facing side of the project
. Report writing
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Chen

Crawled data from imdb

Clean and preprocess sources data to combine results

Implemented the baseline models and transformer models
Experimented with various methods to improve model performance
Fine-tuned transformer models with various loss functions and model structure
Imported t5 sentiment model and tried OnlineContractiveLoss
Hand-labeled transformer results

Researched on available metrics

. Modified output plots

10. Report writing
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Appendix

Result of Baseline model
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