
ECE 1786 – Creative Applications of
Natural Language Processing

“Eng2Py” Project Final Report
10th December 2022

Course Instructor: Prof. Jonathan Rose

Team Members

Dhairya Parmar - 1006859516
Yuchen Dai - 1008242313

Word Count - 1982 words

Introduction:
The goal of our project is to generate code solutions to basic python programming
problems pertaining to sorting algorithms using natural language queries. In very simple
terms, the problem that we aim to solve is, given an English instruction to write a Python
program for a sorting problem, to generate python code that attempts to solve the
problem. The purpose of focusing on sorting problems is to explore if a language model
can learn a specific class of problems better.

The motivation behind our project is creating a piece of software that can help software
developers save keystrokes or avoid writing dull pieces of code and help non-programmers
in other fields, who require computation in their daily work, in creating data manipulation
scripts.

Project Illustration:

Background:
Code Generation is a long standing goal of artificial intelligence. Recent developments in
achieving generation of functionally correct code has shown great potential. Wang, Yue et
al. [1] proposes an encoder-decoder style transformer model CodeT5 for different types of
natural language to programming language and vice-versa tasks. The literature also
proposes a novel identifier-aware pre-training task that enables the model to distinguish
which code tokens are identifiers and to recover them when they are masked. After
pre-training this model is then fine-tuned for downstream tasks like Code Summarization,
Code Generation, Code Translation, Code Refinement and Defect Detection. The literature
also evaluates this model on standard code-related benchmark tasks and compares its
performance against other models designed for programming language related tasks.

Chen, Mark et al. [2] introduces a new set of GPT style models fine-tuned on code called
Codex models. The inspiration for these models was to investigate whether it was possible
to train large language models to produce functionally correct code bodies from natural
language docstrings. These Codex models displayed impressive performance in code
generation tasks. Moreover the literature also proposes an evaluation metric called
‘pass@k’ to evaluate functional correctness, where k code samples are generated per
problem and a problem is considered solved if any sample passes a set of unit tests, and the
total fraction of problems solved is reported. The latter GPT-3 style Codex models power
the most state-of-art code generation application Github Copilot, a demo of which can be
seen in the image below,

Img Ref. “https://www.onmsft.com/news/microsoft-github-copilot-openai”

https://www.onmsft.com/news/microsoft-github-copilot-openai

This project is inspired by the results of Github Copilot and the supervised fine-tuning
approach used to build the Codex models.

Data and Data Processing:
All of our data is hand-made, the strategy for data creation involves combining different
sorting algorithms with simple problems that can be solved using sorted arrays. A total of
331 samples were created using 33 sorting algorithms and their variants and 10 simple
problems. An example data sample looks like below,

The training, validation and test splits were manually created from this dataset since it was
desired to have splits that were stratified on sorting algorithms and evaluation sets to be
composed of truly unseen combinations not used in the training set. In addition to these,
we added 14 new samples to the testing set. Finally, the splits are as follows, 202 training
samples, 28 validations samples and 101 testing samples.

To prepare data for fine-tuning we tokenized the data, implemented padding to the longest
sequence and assigned a separate token for the words to be ignored, for both english and
python inputs.

Architecture & Software:
The model architecture used for this project is the CodeT5 model, a model with the same
architecture as the standard T5 model (encoder-decoder model as shown in the figure
below) but with a special code-specific tokenizer that can leverage the syntactic structure a
code snippet possesses

Img Ref. “http://jalammar.github.io/illustrated-transformer/”

The CodeT5, analogous to the T5 model, can also perform multiple tasks like code
summarization, code translation, code generation etc.,

Img Ref. “https://medium.com/analytics-vidhya/t5-a-detailed-explanation-a0ac9bc53e51”

http://jalammar.github.io/illustrated-transformer/
https://medium.com/analytics-vidhya/t5-a-detailed-explanation-a0ac9bc53e51

As shown in the figure above, The task “Generate Python:” is a direct application of what
we aim to achieve. For this project, the largest CodeT5 model we can implement,
complying with the computational resources we have, is the base-sized model. The encoder
and decoder layer stacks consist of 12 transformer blocks each (each block comprising
self-attention, optional encoder-decoder attention and a feed-forward network). The
feed-forward networks in each block consist of a dense layer with an output dimensionality
of dff = 3072 followed by a ReLU nonlinearity and another dense layer. The “key” and
“value” matrices of all attention mechanisms have an inner dimensionality of dkv = 64 and
all attention mechanisms have 12 heads. All other sub-layers and embeddings have a
dimensionality of dmodel = 768. In total, this results in a model with about 220 million
parameters.

This model can be found on huggingface and to reproduce this one can follow the code
provided in the figure below,

The hyperparameter setting for the fine-tuning mode are as follows,

Apart from the usual pytorch implementation of fine-tuning a model from huggingface we
made use of APIs like ‘Pandas’ for data processing and ‘Weights and Biases’ for plotting
learning curves.

Baseline Model:
As our project evolved, we decided to include the small variant of the codet5 model as our
baseline model. The reason was that we would like to find out if we improved the results in a
meaningful way since our main model is a larger variant of the original codet5 model.

The small variant model has the same architecture as our main model, as described in the above
section. The only difference is that it has around 60M parameters, compared to 220M of the main
model.

Quantitative Results:
Our original thought was to hand-label the results based on the completeness and correctness of
the generated code. After generating some outputs of our model, less than half of the results pass
this strict metric.

However, we observed that some of the failed samples correctly generated the sorting
algorithms, which was our goal. So, besides the strict metric, we proposed another metric that
only measures based on the completeness and correctness of the sorting algorithms. This new
metric well-fitted our project and would provide a better score.

We named these two metrics Metric A and B as follows:

● Metric A: Pass if the generated code has the correct syntax and completes the task of the
input, otherwise, fail

● Metric B: Pass if the generated code has the correct syntax of the sorting algorithm even
if it does not complete the task, otherwise, fail

Regarding the quantitative results of the baseline model and the fine-tuned model, we
hand-labeled all our test data based on these two metrics and computed a final score as a more
direct view. The labels and observations for each one were included in the notebooks.

We concluded that there was no need to compute a final score for the baseline model since the
generated results were bad and we could barely find a sample with correct syntax. We will show
sample outputs of this model in the Qualitative Results section below.

For our fine-tuned model, we tested 101 samples in total and the accuracy for Metric A was
46.53% and the same for Metric B was 68.31%. We couldn’t say this result was impressive, but
compared to that of the original codet5 model, we believe that we improved the results in a
meaningful way.

Qualitative Results:
To show the results in detail, several representative samples are shown below:

Sample 1:

Input: write a python program for Recursive Insertion Sort

Baseline Result:

Fine-tuned Model Result - Pass Metric A & B:

Sample 2:

Input: using Cycle Sort, sort an input array and print the third maximum element

Baseline Result:

Fine-tuned Model Result - Fail Metric A & B:

Sample 3:

Input: Write a python program that uses the Random Pivot Quick Sort to determine if any value
appears in the array at least twice

Baseline Result:

Fine-tuned Model Result - Fail Metric A, Pass Metric B:

Observations:

The baseline results, as we can see, were not making any sense, they neither had correct syntax,
nor the proper sorting algorithms. This is why we thought there was no need to compute a score
for it, as mentioned in the Quantitative Results section.

As shown in the above sample, we observed that the results of the fine-tuned model could be
generally divided into three groups: both Pass (Sample 1), both Fail (Sample 2), and one Pass
one Fail (Sample 3). Metric B mainly affected the third group, one Pass one Fail. Since the
accuracy for Metric A is 46% and the same for Metric B is 68%, it means that around 22% of the
results belong to the third group. This shows that Metric B indeed provided us with quite
different results from Metric A.

We also observed that our model was more likely to generate the correct code for some
well-known sorting algorithms but did not do a good job on some uncommon algorithms or the
ones with complex structures. Clearly, this is caused by limited training data, the model might
not be pre-trained with these algorithms before and we were not able to make the model
well-learn these algorithms with our dataset. If we can increase the amount and diversity of our
dataset, we expect better results than what we have now.

codet5-base Without Fine-tuning

To see if our fine-tuning step actually improved the results, we tested on the codet5-base model
with the default parameters and the results with the same sample inputs as above are shown
below:

Sample 1:

Sample 2:

Sample 3:

We can see that the results are similar to the baseline results. Since the codet5 model is not
pre-trained on turning natural languages into code, it cannot be directly used to perform this task
without fine-tuning. This evidence shows that our fine-tuning step indeed improve the results as
expected.

OpenAI Codex

In addition, we compared our results to that of the openAI codex model, which is state-of-art in
code generation. The results with the same sample inputs as above are shown below:

Sample 1:

Sample 2:

Sample 3:

As we can see, the codex model generated the almost perfect code of the algorithm and correctly
solve the problem. Our model results are not able to reach the level of the codex model results,
but we believe if we increase the amount and diversity of our dataset, we will further improve the
performance of our model.

Discussion and Learnings:
Based on our results and the above observations, 46% accuracy for Metric A and 68% accuracy
for Metric B might not reach the level of the openAI codex model, but compared to the small
variant model and the same model without fine-tuning, we improved the results in a meaningful
way.

When looking back on our project, we encountered several difficulties. First, we spent some time
finding an appropriate model for code generation. Second, we put a lot of effort into
hand-labeling our results since there are over a hundred test data with long outputs. Third, which
was the most difficult part, data collection. We underestimated the complexity of our data and we
cannot find the data that we want. This took us more time to create data by ourselves.

So, if we have a similar project, we will take this into consideration before we actually start the
project. By this way, we can save some time on searching data and work on increasing the
diversity of the dataset to achieve better results.

Individual Contributions:
Dhairya Parmar:

● Created 216 data samples, includes training, validation and testing samples
● Manually generated the training, validation and testing splits
● Wrote Datasets.ipynb for importing data in a compatible format
● Responsible for adapting the model script for CodeT5
● Incorporated ‘Weights and Biases’ for plotting learning curves
● Hand-Labeled 50 testing samples using metrics explained above

Yuchen Dai
● Created 100 data samples for training + 14 for testing
● Wrote the initial version of the t5 model
● Trained the baseline model
● Hand-Labeled 51 testing samples
● Compared the results between baseline model, main model, main model without

fine-tuning, and codex model

References:

[1] Wang, Yue, Weishi Wang, Shafiq Joty, and Steven CH Hoi. "Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation." arXiv
preprint arXiv:2109.00859 (2021).

[2] Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards et al. "Evaluating large language models trained on
code." arXiv preprint arXiv:2107.03374 (2021).

[3] OpenAI Codex API: https://openai.com/blog/openai-codex/

https://openai.com/blog/openai-codex/

Permissions

Dhairya Parmar
● permission to post video: wait till see video
● permission to post final report: yes
● permission to post source code: yes

Yuchen Dai
● permission to post video: wait till see video
● permission to post final report: yes
● permission to post source code: yes

