
ECE1786 Project Final Report

EZPaperSearch
Paper Recommendation Application

Yuhan Wei 1000893161

Evan Lyu 1002058024

word count = 1984
penalty = 0

Permission

Yuhan Wei Evan Yunze Lyu

Permission to post video Yes Yes

Permission to post final Report Yes Yes

Permission to post source code No No

1 Introduction

Paper searching can be very time consuming and tiring, especially when looking for
papers on a specific topic. The project aims to build an effective and efficient paper
recommendation application, EZPaperSearch, that helps users find papers they might
be interested in without having to spend hours reading through dozens of articles. The
paper recommendation application takes in the title and abstract of the context paper
from the user and outputs a list of related articles to the user as recommendations
(Figure 1).

Figure 1: Input and Output of EZPaperSearch Application

2 Background and Related Work

To achieve the task, we will be measuring the similarity of papers. The most in-
tuitive method to evaluate the similarity of two documents is comparing them word
by word. Rada et al. [1]comprehensively evaluated various corpus-based or knowledge-
based word semantic similarity measures, such as Pointwise Mutual Information [2],
Latent Semantic Analysis [3], Leacock & Chodorow similarity [4] and Lesk similar-
ity [5]. The best F1 score(81.3%) was achieved by combining several methods into one
with simple average while the vector-based similarity baseline using TF-IDF weights
achieved 75.3% F1 score. However, this method relies heavily on external resources:
corpus and knowledge. In addition, it ignores the connection and semantics between
words.

Recently, with the explosion of deep learning techniques, more and more researchers
designed siamese deep learning networks in the semantic text match area. Jyun Yu et
al. proposed a Siamese multi-depth attention-based hierarchical recurrent neural net-
work (SMASH RNN [6]. SMASH RNN is designed to tackle the challenge of extracting
the semantics of individual words, phrases and sentences from complex document struc-
tures. It incorporates two MASH RNNs and fuses the output using a siamese structure
and is shown to be effective in measuring the semantic similarity between two long-form
documents. Thus, the SMASH RNN model has the potential for application in related
article recommendations where precise long-form semantics analysis is essential. Ex-
tensive research also shows that SMASH RNN is superior (82.19% accuracy) in related
article recommendations compared to other methods such as regular RNN, CNN, and
DeepQA.

Since 2018, the emergence of large pre-trained transformers has significantly change
the natural language processing area. BERT [7], RoBERTa [8] and GPT2 [9]have
been successfully applied in the task of semantic textual similarity, and achieved the
state of art performance [10]. In 2019, Nils Reimers and Iryna Gurevych designed a
Siamese BERT network: Sentence-BERT to derive meaningful text embeddings from
the input [10]. This structure reduced a high computational overhead required by

1

a single pre-trained transformer network. Sentence-BERT achieved around 87.79%
accuracy compared to single BERT network whose accuracy was 84.94% with SentEval
toolkit [11].

3 Data Processing

The dataset used for this project is the open-source S2ORC dataset [12], which
covers 136m+ scientific papers from 20 fields of study. This dataset is sufficiently large
and contains all the necessary information required for training our model: the title,
abstract, and references used in the papers as well as the field of study.

Considering the wide range and the huge amount of papers in our dataset, we decided
to concentrate on papers in one field of study: Computer Science. We downloaded
1,795,148 paper entries and performed data cleaning and labeling to train our model.

3.1 Data Cleaning

• Load data from Json file and extract columns containing useful information: ‘id’,
‘title’, ‘paperAbstract’, ‘Out-Citations’, ‘fieldsOfStudy’.

• Remove data points with missing information.

• Remove non-English papers.

The cleaned dataset contains 224,394 paper entries.

3.2 Data Labeling

The models take inputs as pairs of papers (described in more detail in section 4.0).
The following steps showed how we constructed our data samples and how we labeled
them.

• Generate all possible unique paper pairs among all papers

• For each paper pair, calculate the similarity of citations using Jaccard similar-
ity.The reference similarity is used as a metric for measuring the relatedness of
papers in each paper pair [6]

Jaccard(U, V) =
|U ∩ V |
|U ∪ V |

• Label positive samples whose similarity is greater than 0.5.

• Randomly select an equal number of pairs whose similarity is 0 as negative sam-
ples. Figure 2 shows two examples of positive paper pair and negative paper pair.
The label of the data looks reasonable to us.

• Split the dataset into training, validation, and testing sets

2

Figure 2: Examples of paper pair

Table 1: Data splitting

Training Validation Testing

Split Ratio 0.7 0.15 0.15

Sample Count 1160 248 248

4 Baseline model

The baseline model is a TFIDF-based model that measures document similarity by
evaluating how relevant a word is to a document in a collection of documents. The
model takes into consideration two factors: term frequency (TF) and inverse document
frequency (IDF). The former measures how many times a word appears in a document,
and a higher value means the higher importance of the word to this document. IDF
evaluates how frequently a word appears in a set of documents. A word occurs fre-
quently among all documents carries less information from a specific document, such as
’then’, ’a’. The final metric TFIDF is the multiply of TF and IDF [13]. In this sense,
the model is well suited for the task of measuring the similarity between scientific pa-
pers. With the baseline model, the input abstract of the context paper and candidate
paper are converted into vector representations using the sklearn TfidfVectorizer. Then
the cosine similarity between the vector representations is calculated, and a threshold
of 0.5 is applied to the cosine similarity to determine whether the pair of papers are
related, indicated by a binary label output from the model.

5 Deep Learning Model

5.1 Training Phase

Inspired by Sentence-BERT, we decided to employ the Siamese Deep Learning Net-
works (Figure 4) [10]as our main model. In this architecture, two identical transform-
ers with mean pooling are used to extract the text embeddings from two papers in

3

Figure 3: Baseline model architecture

the pair. Then, these two embeddings are concatenated together with their difference
and fed into a binary classifier. Our networks are compatible with both BERT-based
and GPT-based transformers. The output embedding has a dimension of 768, and the
binary classifier is a fully-connected layer (768 x 2) for the label output.

After the training procedure, we got two trained models: the feature extraction
model and the classification model. The former would be used to compute text em-
beddings of all papers in advance. The latter would be used to perform a pair-wise
comparison on all pre-computed embeddings in the inference phase.

Figure 4: Deep leaning model architecture

5.2 Inference Phase

During the inference phase, the workflow would be different from the training phase,
as shown in Figure 5. To save the inference time, we pre-computed text embeddings
of all papers with our trained feature extraction model and saved them in a database.
After the application receives the input paper from the user, it will first check whether
the paper is in the database. If it is, the corresponding embeddings will be fetched
directly. Otherwise, the trained feature extraction model will be invoked to compute

4

its embedding and insert it into the database. Afterward, the trained classifier will
be called for input embeddings and each of the other embeddings in the database to
determine the relatedness with a confidence value. Finally, the application will output
the top k recommendations to the user.

Figure 5: EZPaperSearch application architecture

6 Quantitive Results

The following table shows the quantitative results with the classifier head after we
finished training. We tested multiple pre-trained transformers: GPT2-Medium, GPT2-
Small, and RoBERTa-base, and used F1 score as our evaluation metric. Among all
transformers, GPT2-Small achieved the best performance with reasonable processing
time. Our baseline model: TFIDF model had the worst performance but the shortest
processing time.

Table 2: Quantitive results

Model Dataset F1 Score
Processing
Time

TFIDF Model (baseline)
Validation 0.78 -

Test 0.83 0.1s

GPT2-Medium
Validation 0.92 -

Testing 0.91 7s

GPT2-Small
Validation 0.89 -

Testing 0.93 2s

Roberta-base
Validation 0.90 -

Testing 0.87 2s

5

7 Qualitative Results

The following tables shows some examples of top 3 recommendations from our ap-
plication. Overall, the recommendations are reasonable. For example, the input papers
in the Figure 6 are talking about robotic control and superconductor respectively, the
top 1 result from EZPaperSeach looks the most related from our perspective.

Table 3: Reasonable recommendations from EZPaperSearch (Please see the screenshots
with full text in Appendix A)

Input Paper
Local Gaussian process regression for real-time model-based robot control
High performance and compliant robot control requires accurate dynamics models
which cannot be obtained analytically for sufficiently complex robot systems...

Top 1
Recommendation

Real-Time Local GP Model Learning

Top 2
Recommendation

7DOFs Robot Numerical Approach Method with Jacobian

Top 3
Recommendation

Bifurcations and symmetries of optimal solutions for distributed robotic systems

Input Paper
Operating Experience of Superconductor Dynamic Synchronous Condenser
High-temperature superconductor (HTS) dynamic synchronous condensers have
a small footprint...

Top 1
Recommendation

Superconductor synchronous condenser for reactive power support in an electric
grid

Top 2
Recommendation

Sliding mode control of three-phase four-leg shunt active power filter

Top 3
Recommendation

Superconducting fault current limiter to mitigate the effect of DC line fault in
VSC-HVDC system

6

However, we do find some cases where EZPaperSearch does not work well. In the
following example, two input papers are the most related to each other based on their
reference similarity. But the results from EZPaperSearch look irrelevant to the input.
The embeddings from our trained transformers fail to capture all semantic meanings in
this case, which leads to the misbehavior of the classifier.

Table 4: Inappropriate recommendations from EZPaperSearch (Please see the screen-
shots with full text in Appendix B)

Input Paper

Excitation, observation, and ELF-MD: optimization criteria for high quality test
sets
In previous work, we have shown that optimizing the number of site observations
leads to more defect detection...

Top 1
Recommendation

Parameter domain pruning for improving convergence of synthesis algorithms

Top 2
Recommendation

A feature for character recognition based on directional distance distributions

Top 3
Recommendation

Identity-Aware Convolutional Neural Network for Facial Expression Recognition

Input Title Balanced excitation and its effect on the fortuitous detection of dynamic defects

Input Abstract
Dynamic defects are less likely to be fortuitously detected than static defects
because they have more stringent detection requirements...

Top 1
Recommendation

7DOFs Robot Numerical Approach Method with Jacobian

Top 2
Recommendation

The improved depth estimation algorithm based on FTV

Top 3
Recommendation

The discussion of the principle and application about remanufacturing of covered
mold welding

7

8 Discussion and Learning

Overall, our model has reasonable performance on the recommendations, but the
inference time is much longer than the baseline model. The reason is that he binary
classifier gets invoked for each paper in the database, which significantly increases the
computational overhead. The baseline model uses cosine similarity with threshold 0.5
to find the most similar items. We tried this method in our experiments, but the results
looked not acceptable, especially when we provided an arbitrary sentence as the input
abstract. The following two figures shows the input the cosine similarity method still
recommended some papers, while the classifier returned nothing. We might need to
change the way of training our model to replace the classifier with the simple cosine
similarity method.

Table 5: Inputs that cosine-similarity still returns some recommendations (Please see
the screenshots with full text in Appendix C)

Input Title ece1786

Input Abstract ece1786

Input Title
Writing Equipment and Women in Europe 1500-1900 (History Pa-
per)

Input Abstract
This article examines the history and development of the material
culture of...

Looking back on the whole project, we found that the workload spent on the data
processing was much heavier than what we expected. We evaluated the relatedness
between all unique pairs among 224,394 papers in the cleaned data set, which required
significant computation time and power. We spent lots of time optimizing our code and
leaning to use multiprocessing and parallel computing with Dask dataframe. It was a
great learning experience for us. Moreover, after reviewing the quantitative results, we
realized that the more complex model does not necessarily yield a better performance
but is always more expensive. Therefore, choosing a suitable model would be a core
decision for a real application design.

8

9 Contribution

The following table shows the contributions from each team members.

Table 6: Individual contributions

Task Contributions

Data Processing

• Evan wrote the initial data cleaning and labeling code

• Yuhan optimized the data processing code

Algorithm

• Evan implemented the baseline model.

• Evan evaluated the baseline model.

• Yuhan implemented the main model.

• Yuhan trained and evaluated the main model.

• Evan wrote the gradio user-facing of the software.

• Yuhan implemented the architecture of the software.

Documentation

• Evan and Yuhan created and reviewed Proposal, Proposal Pre-
sentation, Progress Report and Final Presentation together.

• Evan wrote Introduction, Background and Related Work, Data
Processing and Baseline Model in Final Report.

• Yuhan wrote Architecture and Software, Quantitive Results,
Qualitative Results and Discussion & Learning in Final Report.

9

References

[1] “Corpus-based and knowledge-based measures of text semantic similarity.” AAAI
Press, 2006, pp. 775–780.

[2] P. D. Turney, “Mining the web for synonyms: Pmi-ir versus lsa on toefl,” 2002.
[Online]. Available: https://arxiv.org/abs/cs/0212033

[3] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent semantic
analysis,” Discourse Processes, vol. 25, no. 2-3, pp. 259–284, 1998. [Online].
Available: https://doi.org/10.1080/01638539809545028

[4] C. Leacock and M. Chodorow, Combining Local Context and WordNet Similarity
for Word Sense Identification, 01 1998, vol. 49, pp. 265–.

[5] M. Lesk, “Automatic sense disambiguation using machine readable dictionaries:
How to tell a pine cone from an ice cream cone,” in Proceedings of the 5th Annual
International Conference on Systems Documentation, ser. SIGDOC ’86. New
York, NY, USA: Association for Computing Machinery, 1986, p. 24–26. [Online].
Available: https://doi.org/10.1145/318723.318728

[6] J.-Y. Jiang, M. Zhang, C. Li, M. Bendersky, N. Golbandi, and M. Najork,
“Semantic text matching for long-form documents,” in The World Wide
Web Conference, ser. WWW ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 795–806. [Online]. Available: https:
//doi.org/10.1145/3308558.3313707

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” 2018. [Online]. Available:
https://arxiv.org/abs/1810.04805

[8] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining
approach,” 2019. [Online]. Available: https://arxiv.org/abs/1907.11692

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” 2019.

[10] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” 2019. [Online]. Available: https://arxiv.org/abs/1908.10084

[11] A. Conneau and D. Kiela, “Senteval: An evaluation toolkit for universal sentence
representations,” arXiv preprint arXiv:1803.05449, 2018.

[12] K. Lo, L. L. Wang, M. Neumann, R. Kinney, and D. Weld, “S2ORC: The
semantic scholar open research corpus,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 4969–4983. [Online]. Available:
https://www.aclweb.org/anthology/2020.acl-main.447

10

https://arxiv.org/abs/cs/0212033
https://doi.org/10.1080/01638539809545028
https://doi.org/10.1145/318723.318728
https://doi.org/10.1145/3308558.3313707
https://doi.org/10.1145/3308558.3313707
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1908.10084
https://www.aclweb.org/anthology/2020.acl-main.447

[13] J.-M. G. Sang-Woon Kim, “Research paper classification systems based on tf-idf
and lda schemes,” Human-centric Computing and Information Sciences, vol. 9, pp.
2192–1962, 2019.

11

Appendices

Appendix A

Figure 6: Reasonable recommendations from EZPaperSearch

12

Appendix B

Figure 7: Inappropriate recommendations from EZPaperSearch

13

Appendix C

Figure 8: Incorrect recommendations with cosine similarity method

14

	Introduction
	Background and Related Work
	Data Processing
	Data Cleaning
	Data Labeling

	Baseline model
	Deep Learning Model
	Training Phase
	Inference Phase

	Quantitive Results
	Qualitative Results
	Discussion and Learning
	Contribution
	Appendices
	
	
	
	bd743ca3-1d3e-4793-85fd-78b23501ac80.pdf
	Introduction
	Background and Related Work
	Data Processing
	Data Cleaning
	Data Labeling

	Baseline model
	Deep Learning Model
	Training Phase
	Inference Phase

	Quantitive Results
	Qualitative Results
	Discussion and Learning
	Contribution
	Appendices
	
	
	

