
ECE1786 Final Report
GOTalk

Team Member: Tuoyue Huang; Yezheng Shao

Outline
Introduction 2

Illustration 2

Background & Related Work 3

Data Processing 3
Data Source and Target 3
Cleaning Steps 3

Architecture and Software 4
GPT2 4

Context Generation 5
Dialogue Generation 5

GPT3 6
Generation 7
Solution 7

Software 7

Quantitative Results 8
Evaluation standard of model generation 8

Qualitative Results 9
GPT2 9
GPT3 9

Discussion and Learnings 12

Individual Contributions 13
Tuoyue 13
Yezheng 13

Reference 14

Appendix 14

Permission 15

Word count: 2000

Introduction

The project aims to design a role-playing text game based on Generative Pre-trained
Transformers (GPT). The game will be set in the "Game of Thrones" (GOT) world. Players
will take on the role of Jon Snow. They will read the context and choose one of the three
dialogue options for Jon as the response to influence the following context.

This project is mainly for fun, where players could have the experience of being involved in
the GOT story. Additionally, if the model is fine-tuned with other specific context data, it could
serve as a reference tool for the plot design of stories or movies.

Illustration

Fig. 1

Background & Related Work

The paper[1] is focused on the automatic generation of interactive stories. Rather than
simply generating texts with the appended user-chosen input, the paper tries to improve
story consistency by building short-term and long-term memory. This is done by analyzing
the input paragraphs with the Named Entity Recognition and WordNet Synsets
Categorization, so a reasonable set of actions would be formed from the memories.

Our goal is to create an interactive dialogue game with the background of Game Of Thrones.
AI Dungeon[2] is a deployed project that is very similar to ours. It is a text-generation
adventurous game. The project used the GPT-2 model that has 1.5B parameters and
fine-tuned it with a collection of text adventures. Their project allows users to input any
action and the model will generate a story based on that action.

Data Processing

Data Source and Target
The data are obtained from Kaggle Datasets, which contain the text scripts of all the books
in the "A Song of Ice and Fire" series. This provides both the narratives and dialogues of the
GOT story.

In order to play as Jon Snow and speak for him, we need to locate the dialogues of Jon and
mark them for our model to learn. However, dialogues in books are often written in a more
vivid manner than simply stating who said what. The speaker's name can be written before,
within, or after the quotation marks. Therefore, we need to find and transform Jon's
dialogues into the who-said-what format. This is vital for improving the generation of
complete and meaningful sentences in the game.

Cleaning Steps
1. Filter sections of Jon from all the books and merge them together, which has around

4900 lines of text
2. Find and transform Jon’s dialogues & add special dialogue tokens:

We have written an alterline function to process the text line by line to deal with the
following three cases:

➢ Case 1:
■ One pair of quotation marks
■ ‘Jon’ is at the start of the line.

● Example: Jon’s throat was dry. “You know?”

● Transformed: Jon’s throat was dry. [BOS] You know? [EOS]

➢ Case 2:
■ One pair of quotation marks
■ ‘Jon’ is right after the first ending quotation and followed by a past

verb ending with ‘ed’ or is in the list ["said", "felt", "told"]
● Example: “I have to,” Jon said fervently.

● Transformed: [BOS]I have to, [EOS] Jon said fervently.
➢ Case 3:

■ Two pairs of quotation marks
■ Same condition as Case 2

● Example: “No,” Jon said at once. “That was…”

● Transformed: Jon said at once. [BOS] No, That was… [EOS]
3. Delete the rest of the quotation marks
4. Only keep lines with [BOS] and [EOS] & remove symbols around the tokens
5. Split data into Train and Test files with a ratio of 0.2
6. Tokenized input data for the model with a block size of 50

Finally, we get 378 training samples and 98 testing samples for each epoch

Decoded examples:
- Without special tokens:

‘There were times (… omitted…) Jon Snow was glad he was a bastard’
- With special tokens:

‘are the (…omitted…). Jon admitted stiffly [BOS] Lord Eddard’

Architecture and Software

GPT2
We found a pre-trained GOT model from the hugging face, which is the GPT2-large
model with 36-layer, 1280-hidden, 20-heads and 774M parameters. It could produce
GOT-related content, but it cannot directly fulfill the goal of our project. So we
fine-tuned the pre-trained model with our dataset.

The fine-tuned arguments are set so that the model could generate valid contexts
and dialogues. Some key arguments are shown as follows:

- num_train_epochs = 3
- per_device_train_batch_size = 2
- per_device_eval_batch_size = 2
- learning_rate = 9e-6
- eval_steps = 50

https://huggingface.co/HScomcom/gpt2-game-of-thrones?text=My+name+is+Lewis+and+I+like+to

Despite fine-tuning, another vital part would be how the generations of context and
dialogue are done for our game. We used two critical parameters in the model
generate function, which are stopping_criteria and bad_words_ids, to ensure the
generation is appropriate and relevant. The stopping criteria determine when the
model should stop generating text, while the bad word specifies a list of words that
the model should avoid using during the generation.

A pre-set tokenized introduction would be the first model input, like ‘Winter is coming
’, to initialize the game iteration. For the rest inputs, we just append the generated
contexts or selected dialogues to the previous input and use the last 50 tokenized
words as the final input.

Context Generation
- stopping_criteria: [BOS]
- bad_words_ids: [EOS]
- min_length = 60
- max_new_tokens = 150
- temperature = 0.95
- top_p = 1
- repetition_penalty = 1.1

Raw output example:
“ Model Input Ends With [EOS] winter is coming for all of us. Jon said [BOS] ”

Presented in Phase 1:
“ winter is coming for all of us. Jon said ”

With the setting, the generation will automatically end when the model predicts the
[BOS] and the [EOS] won’t appear in the generation. This gives us the desired
context at a proper length for each context phase.

Dialogue Generation
- stopping_criteria : [EOS]
- bad_words_ids : [BOS] , " , Jon , Snow , he
- min_length = 3
- max_new_tokens = 50
- temperature = 1
- top_p = 1
- repetition_penalty = 1.1

Raw output example:
“ Model Input Ends With [BOS] What is your name, boy? [EOS] ”

One option presented in Phase 2:
“ What is your name, boy? ”

Similarly, the generation stops when the prediction is [EOS] and the generation
repeats three times to get us three dialogue options with the same input. Words in
bad_words_ids help to predict better dialogues, for instance, Jon usually will not
claim himself as ‘Jon’ or ‘Snow’. While the word ‘he’ usually leads the generation to
be more context-like, so we exclude it.

GPT3
For our advanced model, we use the GPT3 text-completion model. We first give
input to the model as the prompt, and then the model will generate a text completion
that matches the given prompt.

The prompt includes the background, rules, and guidance for the game, as well as
an example of one-shot learning used as the starting context for the game. As shown
in the figure below:

Fig. 2

Fig. 3

Generation
- temperature: 1
- max_token: 512
- top_p: 0.9
- frequency_penalty: 0.3
- presence_penalty: 0.2
- Stop: “Option selected”
- best_of: 3

In the generation phase, we set the stop sequence to “Option selected:” to stop the
generation before the player selection. After the player selects the dialogue, that dialogue
will be appended after the “Option selected”. Then we will feed all the generated so far plus
the original prompt as the prompt of the next generation. Our expectation of the model is that
it will follow the format in the example, however, during testing we find that the model
sometimes will skip the context or dialogue options and end the story immediately.

Solution
To solve this instability in the generation, we input the context header manually each round
to give the model a hint that the following generation should match the example format.

Fig. 4

The highlight section in the figure above is the part that is manually added. We have a
counter run in the background that counts the number of contexts generated so far.
Therefore, we can provide the correct context header for the next generation based on the
counter.

Software
We implemented our software with React and Flask. We also deployed it on the Amazon
EC2 instance.

Quantitative Results

Evaluation standard of model generation

Incorrect Structure:
- context too short and not meaningful
- no [BOS] or [EOS] was predicted when generation reaches the maximum
- inappropriate position of [BOS]
- no context or dialogue has been generated

Incorrect Dialogue:
- more context-like
- clearly not speak by Jon
- repetitive dialogue options

Incoherent Generation:
- some grammatical errors and not conform to common logic
- contextual disconnect

Incorrect
Structure

Incorrect
Dialogue

Incoherent
Generation

Total
Incorrect

Total
Generation

GPT2 32 3 9 44 100

GPT3 2 1 0 3 100

Table 1.

Since our task is text generation, it is hard for us to evaluate with common metrics.
Therefore, we set our standard based on the game we want to realize. Both models
generate 100 times, and we manually judge each generation accordingly, giving us the table
above. Thus, GPT2 has an error rate of 44%, while GPT3 only has 3%. Most incorrect
generations of GPT2 are caused by the first two rules from Structure and incoherent
generation. Its dialogue generation actually goes well.

Fig. 5

Qualitative Results

GPT2
Overall performance is not good for GPT2, we select three iterations from the above 100
generations. We observe that the dialogue generation usually performs well, except for the
last A and C, which are more context-like. All three contexts are problematic, they are
usually incoherent from the selected choice. Sometimes, like in the last context, ‘My brother
… sorry’ sounds more like to be dialogue said by Jon instead of showing up in the context.

Fig. 6

GPT3
Example of Incorrect Structure

Fig. 7

As you can see from the figure above, the generation stopped after the context. This is a bad
generation since there are no available options for players to choose from.

Example of Incorrect Dialogue

Fig. 8

To save some space, we have truncated the context and the selected option. But from the
highlighted dialogue options, we can see that these three consecutive contexts give the
same options. These repetitive dialogue options show that the story doesn’t make enough
progress and it will easily bore the players.

Example of Good Generation

Fig. 9

The above example is generated when the player sets the goad to “Jon Snow finds his love
of life”. As we can see from the highlighted section, the model generates a plot that Jon
Snow met this woman. This creates a smooth change that leads the story toward the desired
ending.

Discussion and Learnings
Overall, the GPT3 text-completion model performs much better than our fine-tuned GPT2
model. GPT2 consistently fails to produce a relevant context and the transition of characters
is not smooth, likely due to its smaller model size and fewer training examples.

When it comes to GPT3, it surprises us with a nearly perfect performance. The model is able
to understand our prompts and learn from examples, resulting in a 97% success rate for
generating valid output. One thing that surprised us was its relevance to the book Game Of
Thrones. For instance, when we select the ending to be "Jon Snow finds his love of life", the
generated story leads Jon Snow to meet Ygritte.

We learned a lot from this project. The most important takeaway is the importance of
cleaning raw data and formatting it properly for the model. This requires adding special
tokens to the data so the model can recognize it. We also learned about how to use
advanced models like GPT3 to create engaging games. If given the opportunity to start a
similar project, we would start by using the most advanced but feasible model available. On
the other way around, we could take the advantage of few-shot-learning with GPT3 to create
the demanded data since we have observed its amazing performance.

Individual Contributions

Tuoyue
- Merged all Jon’s sections
- Coded dialogue Case 1
- Cleaned the punctuations
- Finalized the preprocessing pipeline
- Split and tokenized dataset for GPT2
- Finetuned GPT2 and found best generating parameters
- Plot training curves
- Finalized the GPT2 game generating engine
- Evaluated 100 generations from GPT2 game

Yezheng
- Downloaded data from Kaggle
- Extracted Jon’s sections from books
- Coded dialogue case 2 and 3
- Engineered GPT3 prompt and found best parameters
- Implemented the interactive software using Flask and React
- Deployed the software on EC2
- Evaluated 100 generations from GPT3 game

Reference

[1]
J. Freiknecht and W. Effelsberg, “Procedural Generation of Interactive Stories using
Language Models,” International Conference on the Foundations of Digital Games, Sep.
2020, doi: 10.1145/3402942.3409599.
[2]
N. Walton, “AI Dungeon 2: Creating Infinitely Generated Text Adventures with Deep
Learning Language Models,” Perception, Control, Cognition, Nov. 21, 2019.
https://pcc.cs.byu.edu/2019/11/21/ai-dungeon-2-creating-infinitely-generated-text-adventures
-with-deep-learning-language-models/ (accessed Dec. 13, 2022).

Appendix

1. Data source:
https://www.kaggle.com/datasets/khulasasndh/game-of-thrones-books?select=004ss
b.txt

2. Pretrained GPT2 model — HScomcom/gpt2-game-of-thrones:
https://huggingface.co/HScomcom/gpt2-game-of-thrones?text=My+name+is+Lewis+
and+I+like+to

3. Final fine-tuned GPT2 model —- huangtuoyue/GPT2-large-GOTfinetuned_v5:
https://huggingface.co/huangtuoyue/GPT2-large-GOTfinetuned_v5

4. Complete GPT2 100 game generations:
https://github.com/ece1786-2022/GOTalk/blob/main/Evaluation/GPT2_Result_Evalua
tion.numbers

5. Complete GPT3 100 game generations:
https://github.com/ece1786-2022/GOTalk/blob/main/Evaluation/GPT3_evaluation_tex
t.txt

https://www.kaggle.com/datasets/khulasasndh/game-of-thrones-books?select=004ssb.txt
https://www.kaggle.com/datasets/khulasasndh/game-of-thrones-books?select=004ssb.txt
https://huggingface.co/HScomcom/gpt2-game-of-thrones?text=My+name+is+Lewis+and+I+like+to
https://huggingface.co/HScomcom/gpt2-game-of-thrones?text=My+name+is+Lewis+and+I+like+to
https://huggingface.co/huangtuoyue/GPT2-large-GOTfinetuned_v5
https://github.com/ece1786-2022/GOTalk/blob/main/Evaluation/GPT2_Result_Evaluation.numbers
https://github.com/ece1786-2022/GOTalk/blob/main/Evaluation/GPT2_Result_Evaluation.numbers
https://github.com/ece1786-2022/GOTalk/blob/main/Evaluation/GPT3_evaluation_text.txt
https://github.com/ece1786-2022/GOTalk/blob/main/Evaluation/GPT3_evaluation_text.txt

Permission

Tuoyue

• permission to post video: wait till see video
• permission to post final report: yes
• permission to post source code: yes

Yezheng

• permission to post video: wait till see video
• permission to post final report: yes
• permission to post source code: yes

