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Introduction 
As globalization progresses, we are seeing an increasing volume of people taking the 
standardized language tests, some widely known tests are IELTS and TOEFL. Learning a new 
language and getting used to these standardized tests can be a bothersome process, especially 
when you are on your own. Sometimes the teacher is just not there, and you need to mark your 
own test, this can be hard if you are new to the language and do not know the metrics of the 
test. 
 
The structure of these tests is composed of four parts: Listening, Reading, Writing and 
Speaking. To self-evaluate the performance of the Listening and Reading section is easy, one 
can just compare the answer with the solution and deduct marks accordingly. For speaking, a 
human examiner is required to evaluate the performance, so it is quite hard to automate. 
Considering the scope of this project and the fact that applications of NLP are mainly focused in 
written texts, we will be attempting to automate the performance evaluation for the writing 
section. 
 
There will be two inputs: the question body of the composition, which is around 25-35 words 
and the written composition around 250-300 words. We are trying to predict the final discrete 
score of the composition that is ranging from 1-9. 

 

Illustration 
The overall baseline model architecture is illustrated below: 

 



 

Final model’s illustration: 

 

 

Background & Related Works 
This application falls under the Automated Essay Scoring (AES) area of the NLP, this field was 
invented back in 1960s, where researchers and linguists are working together to define the 
metrics embedded in an essay, such as essay length, average sentence length etc. and they 
used multiple linear regression to predict the score of a given essay, one variation of this 
method is replacing the linear regression with the binary classifier or k-nearest-neighbors to 
distinguish good or bad essays. (Larkey) 
 
After the invention of the neural networks, this ground-breaking technique is also applied to 
AES, this removes the need of manually identifying the key features, since deep neural 
networks such as CNN and LSTM can automatically capture and learn the complex features of 
essays. It is discovered that CNN are effective for sentence modeling while LSTM are more 
effective in document modeling. (Dong et al.) 
 
The emergence of transformers also gives AES much more flexibility for processing text 
sequences, there are various pre-trained models available across the internet and they are all 
proven excellent in terms of their own usage, a pre-trained model can be fine-tuned on the 
training dataset to achieve a higher accuracy. 
 

Data and Data Processing 
So far, 4000 data entries have been collected, a single data entry is composed of three parts: 
Topic: The given composition topic, usually around 25-50 words. 
Content: The composition body written based on the topic, around 200-400 words. 
Score: A discrete score from 1-9, where all composition below 4 is categorized as “<4”, the 
score set is: 

 𝑆 = {< 4, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9} 
These data entries were collected either by hand (copy & paste) or by python scraper from 
different websites, the collection method needs to be readjusted since each website has a 
different format. The source of data, number of data collected, and collection method is listed 
below: 



 
The data has also been cleaned so they are evenly distributed among the 12 classes. This is 
done by firstly collecting all available data at once, then inspect the score distribution and 
remove some data from the overpopulated class (7.5). The class distribution of before/after 
data cleaning is listed below. 

 <4 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 

Before 457  311  308  320  302  320  394  322  677 321  338  311 

After 457  311  308  320  302  320  394  322  297 321  338  310 

 
In addition to this, individual data entries have also been cleaned by replacing all the newline 
characters (/n, /r) to spaces. 
 

Architecture and Software 
The overall architecture of the final model can be described by the illustration above.  

The input is composed of the combination of context and the topic, separated by a space token. 

Then the input is fed into the gpt-2 encoder that outputs a 1024-dimensional representation 

vector. The encoder is a pretrained gpt-2 medium model from the huggingface. Finally, the 

representation vector is passed to a classification/regression head. 

For the classification head, it’s a simple fully connected layer that takes in 1024-dimensional 

vector and outputs a 12-dimensional vector. This 12-dimensional vector is passed through a 

softmax layer and cross entropy loss layer. 

For the regression head, it’s a fully connected layer that outputs one single scaler. Finally, the 

scaler is passed into a customized piecewise function that bounds the range of the scaler 

(between 3.5 and 9). Finally, the bounded scaler will be used to calculate an MSE loss with the 

label (for <4, the label score is 3.5).  

During training stage, both encoder and the head are trained. During evaluation stage, the 

prediction of the regression head is the closet score band to the bounded output scaler. For 

example, if the bounded scaler is 5.6, the model’s prediction will be 5.5. 

We also built a frontend for the final model using Gradio. The user will need to input the topic 

and the content to get a prediction score. 



Baseline Model 
The baseline model has a CNN architecture, it has two separate CNN that are responsible for 

topic and content respectively, both CNNs have one convolutional layer for producing the 

feature map and a Maxpool layer for pooled representation. The output of these two CNNs will 

be concatenated and fed into a fully connected neural network. The addition of feature map 

sizes of two CNNs would be the input layer size and the neural network has one hidden layer of 

size 100 and an output layer representing the possibilities of each class. For the regression 

baseline model, output layer has a single numerical output indicating the final score of the 

essay and everything thing else remains unchanged. 

To train the classification model, the loss function of Cross Entropy Loss is used, where the true 

output will be a one-hot encoding of the result class. For the regression model, Mean Squared 

Error was used to calculate the absolute distance from the prediction score to the target score. 

Quantitative Results 
 

We evaluated both baseline model and the final model with classification and regression heads 

on the validation set. We evaluated with two metrics, the exact accuracy and the average 

absolute distance. Worth noting that the absolute distance is the distance between the 

prediction score band and the label score band.  

Classification Head Accuracy Average Absolute Distance 

Baseline 21% 1.5 

GPT-2 finetune 41% 0.66 

 

Regression Head Accuracy Average Absolute Distance 

Baseline 14% 1.55 

GPT-2 finetune 32% 0.64 

 

In both classification and regression heads, the gpt-2 finetuned model performs better than the 

baseline model under both metrics, as expected. For average absolute distance, the regression 

head for the gpt-2 finetune model performs better than the classification head, but has lower 

exact accuracy than the classification head. This is also expected, because MSE loss essentially 

directly optimizes the distance between the output score and the label score, and CE loss 

directly optimizes the accuracy.  

We believe average absolute distance is a better metric to evaluate this task because two 

essays with the same quality can very easily be given different scores by different graders, and 

this reflects in our training dataset as well. A prediction will be good enough if it’s within an 

acceptable range. 



Qualitative Results 
We evaluated our model on several pieces of writings samples that are outside of our dataset.  

First essay: 

 

This is an essay with good quality. It has little grammatical error and has a lot of discussions and 

contents. As a result, our predictor gives a score of 7.5, which is a very high score for the 

composition test. 



Second essay: 

 

 

This is an essay that’s poorly written compared with the first one. It has much more 

grammatical errors even in the first paragraph, and it does not discuss the topic very well. The 

prediction given is 5.5, which is a lackluster score (Most university requires 6.5 for 

undergraduate admission). 

 

Inputs that don’t work as well as expectation: 

As we experimented with more inputs, an unexpected problem has occurred. The model seems 

to not capture the relationship between topic and content well. The model seems to rely 

heavily on the quality of writing in the content and neglects whether the content discusses well 

around the topic. An example is shown below. The content is the same as the first essay but the 

topic is randomly swapped with a different one. 

 



 

The predictor still gives 7.5 as the score, even though the content discusses a different topic.  

 

Discussion and Learnings 
The overall performance for both models falls into expectation, the baseline model provided a 

rough guess for the result while the refined gpt-2 model presented a more accurate outcome, 

the metrics used (accuracy and absolute distance) is not very fair for this application because 

writing task is very subjective so as the marking process, the exact same essay might get graded 



into different scores, but they should be in the same range. To improve this, we can make the 

categorization coarser, for example, the score of 5, 5.5 and 6 can be categorized into “5-6”, this 

way the model can provide a higher accuracy while keeping the evaluation consistent. 

To make the project better, we can support the model with more training data, 4000 data 

entries is plenty but it can still be improved with a larger amount of data, we can also improve 

the accuracy by using a larger language model such as GPT-3, this will help the model to adapt 

to various of topics. 

To resolve the issue described in the qualitative analysis, we can create examples in the dataset 

that have mismatched topic and content and assign the example a low score. We think 

finetuning using GPT-3 would also result in better performance in these examples because GPT-

3 has the ability to do zero-shot learning and is able to capture relationship between sentences 

very well. 

Individual Contribution 
 

Ziqin:  

• Proposed the project idea 

• Hand collected and labelled around 100 data samples and used scraper to collect 

around 1000 data samples from different websites 

• Constructed and trained baseline model. 

 

Chuntung:  

• Collected around 2000 data samples using scrapper and manual work.  

• Constructed and trained the gpt-2 finetuned model. 

• Proposed to experiment with regression head. 

• Gradio implementation 
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