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1.0 Introduction 

Hate Speech has drawn considerable attention in recent years due to its rapid dissemination on 
online social media platforms, as well as interactivities on streaming platforms and In-game 
chats. It is pervasive on social media and an increasingly worrying issue in society.  

Per the Criminal Code of Canada, hate speeches are seen as criminal offences. For an automatic 
hate-speech detection program, a key challenge is to separate hate speech from offensive 
languages. 

The goal of this project is to develop a program that recognizes hateful, offensive, or neutral 
speech on Twitter and other social media. Unlike conventional censorship by humans, our 
technique would be more responsive, more flexible, and protect users’ privacy better. 

 

2.0 Related Work 

To confront toxic content, a great deal of work has been done. The upfront information to be 
extracted is the lexical features where the summation of word meanings is used as the meaning 
of a sentence [1], e.g., a bag-of-words (BoW) feature. The primitive BoW is an intuitive 
methodology of vectorization at cost of low computation.  

In demand for more information, revisions including N-Gram and Term Frequency–Inverse 
Document Frequency (TF-IDF) have improved BoW [2]. N-Gram takes a sequence of N words 
into vocabulary instead of single words used by BoW. TF-IDF normalizes word frequencies in 
sentences by the word frequencies appeared in whole corpus which weakened the impact of 
common words. 

With BoW features, machine learning algorithms such as Support Vector Machines (SVM), 
Random Forest, Logistic Regression, and Naive Bayes are qualified candidates to classify 
contents [1][2]. Burnap and Williams have discovered linear SVM output satisfying predictions 
[1]. Davidson, Warmsley, Macy, and Weber have compared a few models with tuned 
parameters (N-Gram ranges, regularizations, etc.) and came with SVM with liblinear as the best 
solver [2]. Davidson et al’s best model has achieved an overall F1 score of 0.90, however, with 
significant misclassification between hate speeches and offensive languages. 

Although BoW was proved useful and widely used, it has obvious limitations: changes to 
vocabulary will cause changes to the model structure; and it ignores the relationship between 
words. Therefore, NLP researchers came up with Word2Vec (Word Embeddings) technique. 
Rohan, Tyrus, Kathleen, and Susan performed hate speech detection using such vectorization 
[3]. In Rohan et al’s work, their Transformed Word Embedding Model (TWEM) outperformed 
Logistic Regression with N-Gram and reached an F1 score of 0.924 in the Hate Speech and 
Offensive Language Dataset [4]. 
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3.0 Project Workflow 

The following figure shows the overall workflow for this project. We implemented three 
baseline models and five advanced models. 

 
Figure 1: Overall Workflow for Project  
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4.0 Data Processing 

To launch our project, we have started with the Hate Speech and Offensive Language Dataset 
[4] (dataset 1). 

• Data Cleaning 

Tweets often contain more than plain text and punctuation. Thus, we prepared data for the 
vectorizer by removing phrases that cannot be tokenized while keeping precise meanings as 
much as possible. Processing steps in practice are listed below.  

▪ Expand abbreviations 
▪ Lower casing 
▪ Remove:  

 Stop words 

 Tweet specific phrases (mentioned “@user”, topic (#)/retweet (!!! RT) …) 

 Multiple white spaces/ break-lines 

 URLs/ “#Ampersand” reference 

 Non-ASCII characters 

 Non-alphanumeric characters 

 Other Unicode strings (Emojis…) 
▪ Delete very short words (length less than 2) 

 

Here provides an example of cleaned data and its original form: 

• Original:  
“!!! RT @mayasolovely: As a woman you shouldn't complain about cleaning up your 
house. &Amp; as a man you should always take the trash out...” 

• Processed: 
“woman you should not complain about cleaning your house man you should always 
take the trash out” 
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• Data Balancing and Splitting (Pre-Supplement) 

Since classes for dataset 1 are extremely imbalanced with 77.4% offensive, 16.8% neutral, 
and 5.8% hate, we initially balanced the classes by under-sampling the majorities, i.e., 
offensive and neutral speech, to prevent our model from skewing the data in favor of one of 
the classes.  

Then, we split data into training, validation, and test set with a ratio of 0.64:016:0.2. We 
have shuffled the whole dataset as well as maintained the stratification between classes. 

 

• Data Supplement 

Shortly after implementing a few models, we found it necessary to acquire more data.  

The team experimentally hand-labeled about a few hundred tweets scrapped from the 
latest posts. Our experiment proved hand-labelling infeasible that it is terribly time-
consuming, and we can hardly guarantee label accordance. 

Thus, we introduced two additional datasets: the multimodal hate speech dataset [5] 
(dataset 2) and the sentiment 140 dataset [6] (dataset 3), In such a case, we selected those 
tweets that are confidently identified hate speeches from dataset 2 and a small fraction of 
positive speeches from datasets 3. 

As a result, the smallest class, class 0 now has 10,002 records. In terms of convenience and 
balance, we sampled 10,000 rows from each class.  

Same as before, we identically split the new data. 

 

• Vectorization 

With processed training, validation, and test datasets, we implanted vectorizations before 
fed into different models as required (TF-IDF or Word2Vec). 

 
The following table summarized class distribution at any phase we have modified data volume. 
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Ordinal Dataset 

 

Resampled Dataset (Pre-Supplement) 

 
Supplemented Dataset 

 

Resampled Dataset (Post-Supplement) 

 
Table 1: Classes Distributions of Datasets during Processing   
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5.0 Baseline Models 

With the processed dataset, we have implemented three baseline models. 

According to the work discussed in [1] and [2], we found it effective using TF-IDF vectorizer. In 
practice, we limited the vocabulary size to 5,000. We have tested several models utilized in the 
documents [1] and [2] including k-NN, Naive Bayes, Random Forest, Logistic Regression, and 
SVM. Based on convergence times and classification performances, we have kept Logistic 
Regression and SVM for further comparison. 

In addition, we have produced another baseline with Word Embeddings. We constructed a 
Multi-Layer Perceptron (MLP) with single embedding input, i.e., the average word embeddings 
within a tweet, as well as three output neurons followed by a SoftMax layer so that represent 
the three classes. In practice, we used pre-trained GloVe vocabulary with specified name="6B" 
and dim=100. 

 

6.0 Architectures of models 

In addition to baselines, we have attempted to construct several neural networks: 

• CNN 

The CNN is similar to the MLP we built as a baseline; despite we replaced the “averaging” 
layer with a convolutional layer. We have only utilized kernels of two sizes (3 and 5) and set 
both output channels to 45 through rough a grid search. 

 

• GPT2 

The GPT2 is a uni-directional transformer architecture pre-trained on a very large corpus in 
English. Its attention mechanisms allow the model to specifically focus on the most relevant 
content [7]. In practice, we load the smallest version of GPT-2 with 124M parameters from 
hugging face’s Transformer package: “GPT2ForSequenceClassification”, as well as the 
respective GPT2Tokenizer. 
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• BERT 

BERT is also a transformer architecture trained to learn language representations and 
conceived to be used as the main architecture for NLP tasks in recent years. The following 
picture shows the architecture of our model.  

 

 

Figure 2: BERT Architectures with Potential Classification Layer  

 

There are three hierarchies of BERT. First, the vectorized text data is fed into a pre-trained 
BERT layer to obtain the semantic information. After that, a hidden layer is defined to 
further extract the context information from the data. We designed 3 options for this 
hidden layer.  

▪ The first option is only a simple layer that takes inputs of averaging word embeddings 
(input dimension=768, #parameters = 2,307). 

▪ The second option we chose is a Bidirectional GRU extension (layers=2, hidden 
dimension=512, dropout=0.5, #parameters = 8,666,115), as it is capable of 
simultaneously extracting the text information features from both directions. 

▪ The third option is a CNN hidden layer (#filters = 100, filter window sizes = [2, 3, 4, 5], 
dropout=0.5, #parameters = 1,076,803). It can capture spatial relationships via a sliding 
window.  

Finally, an MLP classifier and SoftMax function are applied to generate classification labels. 
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7.0 Results 

With training and validation sets to implement models, we have summarized the performances 
on the test set, and compared some models with the pre-supplement data. 

Models Vectorization 
F1-Score 
(Class 0) 

F1-Score 
(Class 1) 

F1-Score 
(Class 2) 

Accuracy 

Baseline 

SVM  
(Old Data) 

BoW (TF-IDF) 0.73 0.78 0.84 79% 

SVM  BoW (TF-IDF) 0.90 0.88 0.95 91% 
LR  

(Old Data) 
BoW (TF-IDF) 0.73 0.80 0.87 80% 

LR  BoW (TF-IDF) 0.90 0.89 0.95 91% 

MLP  
(Old Data) 

Word Embeddings 0.65 0.73 0.77 72% 

MLP  Word Embeddings 0.71 0.74 0.82 78% 

Main Model 

CNN Word Embeddings 0.88 0.88 0.91 89% 

GPT2 Word Embeddings 0.82 0.81 0.86 83% 

BERT+MLP Word Embeddings 0.76 0.75 0.81 78% 
BERT+GRU 
(Old Data) 

Word Embeddings 0.68 0.73 0.77 73% 

BERT+GRU Word Embeddings 0.92 0.90 0.95 93% 
BERT+CNN Word Embeddings 0.92 0.91 0.95 93% 

Table 2: Test Results Summary and Comparison  

As shown in Table 2, we have found that the classical approaches are competent to this task to 
some extent. Both SVM and Logistic Regression methods perform similarly, giving accuracies of 
around 91%.  

A noticeable limitation to our MLP baseline is that it only takes one embedding per text to fit so 
it acted as a “bottleneck” (performed no better than 80% accuracy) and the convolutional layer 
showed significant progress than the MLP. Likewise, we observed such progress between 
BERT+MLP and BERT+CNN. 

Table 3 shows qualitative results of three classes with predictions from BERT+CNN. 

Text Prediction True label 

trump has gone full ret*rd  0 0 
even they know you b*tch 1 1 

happy monday morning 2 2 

* 0 – Hate speech; 1 – Offensive language; 2 – Neither/Neutral 

Table 3: Representative Samples with True Labels and Predications 
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8.0 Discussions and Learnings 

Overall, our best model (BERT+CNN) performs well as it has the highest accuracy while 
maintaining high f1 scores. The following figures show training curves of loss and accuracy for 
both the training and validation dataset respectively. The model keeps learning features as the 
number of epochs increases, with no overfitting happening. 

 

  

Table 4: Test Results Summary and Comparison 

 

An impressive discovery from the results is that the machine learning baseline model also 
archives high test accuracy. Take the SVM for instance, it has 91% accuracy, which is close to 
our best model 93%, and even overperforms most of our neural networks.  

According to the confusion matrix below, we can see that the BERT+CNN architecture is slightly 
better.  

 

BERT+CNN  

 

SVM  

 

Table 5: Test Results Summary and Comparison 
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Another finding from the confusion matrices is that we knew the baselines are prone to mixing 
up hate speeches and offensive language, so we wanted to investigate if transformers can do 
better. As a result, transformers did reduce such mispredictions but only to some extent. 

 

We suspected three possible reasons for such an outcome. The first might be the limited data 
volume, we speculate that transformers need massive data to be finetuned. The second is 
tweets contents have a significant number of out-of-vocabulary tokens when using pre-trained 
vocabulary, which cause information loss. The last reason we come up with is that those 
baseline models like SVM and Logistic Regression have stronger initial assumptions about the 
data (i.e., Inductive Bias). In comparison, Deep Learning architectures are more data-driven, 
which could explain classical techniques’ comparable results to our transformers in this task. 

 
For potential improvements, we would propose some measures that we would do differently in 
a similar project based on our experience: The first is to apply for Twitter developer account 
with sufficient privilege at earlier stages to access a larger amount of data. In addition, it will be 
beneficial to train our own vocabulary once we have enough computation power.  
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9.0 Individual Contributions 

Over the past few weeks, the team has efficiently completed equivalent work and the 
collaboration between members are efficient, with meetings frequently to track the progress of 
the project. 

Specifically, Chutian and Yifan shared data collection and processing work; and evaluated and 
compared models together. In addition, 

• Chutian: 

▪ Supplemented dataset with new data 

▪ Implemented baseline models and GPT2 classifier 

▪ Assisted Yifan to debug and tune BERT models 

• Yifan: 

▪ Balanced data with resampling 

▪ Implemented BERT models with classification heads (MLP, GRU, and CNN) 

▪ Assisted Chutian in constructing baselines and Transformer 
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