
PyOverflow - Final Report
Rohith Pudari & Vishal Kanna

Word Count: 1952
Penalty: 0

1. Introduction

Content on StackOverflow [5] often serves a complimentary role for official documentations
with users providing more example usages and clarifying confusing concepts [2]. However, with
the sheer volume of posts on Stack Overflow and no seemingly centralized structural
organization, it is difficult to utilize StackOverflow as a systematic roadmap for learning new
technologies [3]. A structured organization of StackOverflow posts can help readers branch out
of their initial questions and explore other content, which is especially helpful when a developer
is unaware of the specific items they are looking for. The project will focus on classifying
questions on python into classes that are defined by the official standard library documentation
of python [4]. For example, all the StackOverflow questions related to datatypes like lists, tuples,
float..etc will be classified under the “Built-in Types” category same as the official python
documentation.

This will be useful for cataloging the questions on StackOverflow into their respective categories
extracted from the official documentation of python. This process in turn will help programmers
find similar questions on the same topic and also help link key concepts from pythons to the
questions if a user wants to explore in further detail.

2. Illustration of the working of the project

Input- The input to the model is different for training and testing. We also took some measures
(described in data processing) to reduce the differences between the train and test data.

Training- sentences scrapped from the documentation + sampled questions from stack overflow

Testing- Questions from stack overflow

Model- CNN baseline/ GPT-2

Output- label from 0 to 3 representing a category in python

Figure - 1: The Illustration of the Project.

3. Background

Previous works has leveraged StackOverflow as a rich source of information by manually
classifying and clustering questions to understand the current challenges [5] and trends of
specific domains [6], such as mobile development [1], security [2,3], and cryptography [4].
These qualitative studies extract valuable insights into characteristics and motivations of Stack
Overflow posts, potential improvements for existing software APIs, potential improvements of
the overall Stack Overflow platform, and how individuals can use StackOverflow more
effectively. Nevertheless, the process of manually classifying StackOverflow is a laborious task,
which could be expedited through automated mechanisms.

4. Data Processing

We are using official documentation of python [4] as the training data and python questions
from StackOverflow [5] as the test data.

4.1 Training data

4.1.1 Documentation scraping

We scraped official documentation of python for four categories: “Built-in Types” and
“Built-in Exceptions”, “Regular Expressions(Regex)” and “Strings” . We used
beautifulsoup and requests packages in python to perform scraping of documentation
(full code here). We retrieved all the documentation content in the form of JSON files
(here)

https://github.com/ece1786-2022/PyOverflow/tree/main/scraping_docs
https://github.com/ece1786-2022/PyOverflow/tree/main/Data/Training/JSON

Figure - 2: A snippet of a few sentences being scrapped for the class built in types.

4.1.2 Code removal

We removed all the code from our training data (documentation of python) for simplicity
and also because the GPT-2 model is not pretrained for code. This step was largely done
while scraping but also some removal took place while cleaning.

Figure 3: A snippet from built-in types JSON file.

4.1.3 Cleaning/ labeling

The JSON files are converted to pandas dataframes. The content under each major topic
was stripped of special characters such as (‘/n’, ‘/u’,etc) and split into sentences. Each
sentence was given a label based on where the sentence was scrapped from. All the
classes are combined together to create a training dataset. Built-in exceptions had 42
sentences, Built-in types had 153 sentences, Strings had 88 sentences and regex had 34
sentences in the documentation.

Figure 4: Final Training dataset.

4.1.3 Variations in training data

In the examples below the blue rectangle boxes represent individual sentences in the
python documentation and the ellipse represent a single training example that the model
will be fed for training.

Case 1 (Sentences)- separate sentences

Each sentence in the documentation is one training example in the training set.

Case 2 (No Overlap)- 3 combined sentences with no overlap

Each training example contains 3 consecutive sentences from the documentation,

Case 3 (Overlap) - 3 combined sentences with overlap

Each training example contains 3 consecutive sentences from the documentation, with
overlap, this is done to increase the context to the model without losing the size of the
training data.

Case 4 (Stack overflow)- This is case 3 plus 10 stack overflow questions for each label

4.2 Test Data

4.2.1 SQL to retrieve training examples

Initially we retrieved all the questions in StackOverflow with the tag “python” using
SQL. We used StackOverflow data explorer [11] to retrieve those questions. The
questions are further filtered using tags such as “Built in types”, “exceptions”, “strings”
and “regex”. From these filtered subsets we choose 100 questions for each tag except for
built-in types which had only 34 questions.

Figure 5: Raw test data, with two example StackOverflow questions.

4.2.2 code removal

Similar to the training data, we removed all the code blocks from the test data for
simplicity.

4.2.3 Cleaning/ labeling

The data is put through a similar cleaning process as the training data, to remove the
special characters but we do not split the test data into sentences. We split the test data

into its title and body and add the respective label based on the tags it was filtered with
Figure 6 shows the final cleaned test data set for all the labels. The test data file can be
accessed here

Figure 6: A snippet of the cleaned test data.

4.2.4 Variations in test data

The test data has 3 variations on what part of the StackOverflow question is used as the
input of the model:

Case 1 (Title): Title of the StackOverflow question.

Case 2 (Body): Body of the StackOverflow question

Case 3 (Combined): Title + Body of the StackOverflow question

5. Architecture/Software

We used the GPT-2 medium model from huggingface with a classification head of 4 classes. It
has 24-layers and 345 Million parameters. We fine-tuned the model for our classification task.
For this report, we used the default parameters for training. The code file can be accessed here.
The training arguments are as follows:

- Epochs - 3 for the initial testing.
- Epochs- 6 for StackOverflow case in training data.
- Batch size - 1
- Evaluation Strategy: Accuracy
- Training time- 4 mins per epoch on dual NVIDIA Tesla T4 GPUs

https://github.com/ece1786-2022/PyOverflow/blob/main/Data/Test/combined.csv
https://github.com/ece1786-2022/PyOverflow/blob/main/gpt-2-training.ipynb

6. Baseline Model

The baseline model has 2 Convolutional layers that have kernels of different size, then go
through max pooling. The output of the maxpool layers are combined and dropout is applied
here. After the dropout there are 2 fully connected layers which output 4 logits which finally
undergo softmax to give the final class probabilities for the 4 classes.

The training arguments are as follows-

- Epochs - 80
- Batch size - 1
- Optimizer is Adam with learning rate of 0.0001
- Loss- Cross entropy loss
- Evaluation Strategy: Accuracy

Figure 7: Architecture of Baseline Model.

7. Quantitative Results

The X-axis on the graph shows the various combinations of training data and test data both the
models were trained and evaluated with. The Y- axis represents accuracy of the model on the test
data

We can see that in all cases GPT-2 performed better in most cases or at par with the baseline in
the worst case.

When we overlapped our sentences to train the models we saw an increase in our test accuracy
over just using individual sentences in both models. It can also be seen that in this case when we
use both the title and body of the questions for testing there is an increase in accuracy in both
models than by using just one of them to classify the question.

Another surprising result was when we combined sentences but without overlap our accuracy for
both models severely dropped- we feel this is due to the lack of training data as this process cuts
our training data size to one third of the size of using individual sentences.

A final experiment was done to achieve an increase in accuracy by including 10 questions from
each class into the training set with the highest performance (Combining sentences with overlap).
We also increased our training epochs for the GPT-2 model to 6 as we felt the model could
perform better with increased training while the baseline was already saturated at 80 epochs.

These changes achieved the highest accuracy in both models on the test set with both the body
and the title of the question included.

GPT-2- 0.8

Baseline- 0.49

Figure - 8: The Accuracy scores of both models on all cases of training and test data.

8. Qualitative Results

After some analysis on the predictions of the model, we found that the model performs well
when the StackOverflow question is well explained and belongs to one particular class, as
opposed to having multiple labels. Figure 9 shows the best case scenario for the model to
generate a correct prediction. This question is well explained and belongs to one particular
class/label.

Figure - 9: An Example of the best case scenario for the model.

The model was struggling with StackOverflow questions which had multiple topics in them, for
example, in figure 10, the question talks about exceptions in regular expressions, the model
struggled to predict the right label for these kinds of questions.

Figure - 10: An Example of a StackOverflow question where the models struggle.

9. Discussion & Learnings

From both our quantitative and qualitative results it can be seen that the main GPT-2 model
performs quite well for the given problem. In the final training with the overlapped training set
with the addition of stack overflow questions the GPT-2 model was able to achieve an accuracy
of 80% which was well over the baseline. We would consider this good performance keeping in
mind that this task did not have a large pre-collected data source and all the data used for training
was manually scrapped and labeled. Another decision that was made was to use slightly different
training data compared to the test data. This decision was made because if we fed a large sample
of questions from stack overflow to the model there would be too much noise as the questions
are not bound by any conditions and can have large overlap between labels. Hence the training
on the documentation data alongside some questions we felt was the best approach for this
problem as the documentation data had more structure and contained several key words.

The model's behavior to the variations of test data falls in line with our thinking- providing more
information about the question gives us a higher accuracy on the test set.

A surprising insight in our project was using the same training data formatted in different ways
we were able to achieve such high variation in accuracy. This shows us the importance of good
data and also its formatting while training. We also realized the difficulty of scrapping, cleaning
and labeling data, as this was the most time consuming part of the project.

If we were to do a similar project we would give more importance to data rather than the model.
As we feel high quality data can have a larger impact than the pre trained model we choose.

10. Individual Contribution

Rohith- scraped the training data, created the stackoverflow case of the training data, Scraped
and cleaned the test data, and trained the GPT-2 model. Performed code refactoring and added
instructions in readme.

Vishal- processed the training data into a dataset(cleaning/ organizing/ labeling) and created the
different variations, processed the cleaned test data to match the format of the training data and
trained the baseline model.

11. References

[1] N. Imtiaz, A. Rahman, E. Farhana and L. Williams, "Challenges with Responding to Static Analysis
Tool Alerts," 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),
2019, pp. 245-249, doi: 10.1109/MSR.2019.00049.

[2] Gustavo H. Pinto and Fernando Kamei. 2013. What programmers say about refactoring tools? an
empirical investigation of stack overflow. In Proceedings of the 2013 ACM workshop on Workshop on
refactoring tools (WRT '13). Association for Computing Machinery, New York, NY, USA, 33–36.
https://doi.org/10.1145/2541348.2541357

[3] Tamara Lopez, Thein T. Tun, Arosha Bandara, Mark Levine, Bashar Nuseibeh, and Helen Sharp.
2018. An investigation of security conversations in stack overflow: perceptions of security and community
involvement. In Proceedings of the 1st International Workshop on Security Awareness from Design to
Deployment (SEAD '18). Association for Computing Machinery, New York, NY, USA, 26–32.
https://doi.org/10.1145/3194707.3194713

[4] T. Lopez, T. Tun, A. Bandara, L. Mark, B. Nuseibeh and H. Sharp, "An Anatomy of Security
Conversations in Stack Overflow," 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Society (ICSE-SEIS), 2019, pp. 31-40, doi:
10.1109/ICSE-SEIS.2019.00012.

[5] S. Nadi, S. Krüger, M. Mezini and E. Bodden, ""Jumping Through Hoops": Why do Java Developers
Struggle with Cryptography APIs?," 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), 2016, pp. 935-946, doi: 10.1145/2884781.2884790.

[6] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do programmers ask and
answer questions on the web? (NIER track). In Proceedings of the 33rd International Conference on
Software Engineering (ICSE '11). Association for Computing Machinery, New York, NY, USA, 804–807.
https://doi.org/10.1145/1985793.1985907

[7] Chris Parnin and Christoph Treude. 2011. Measuring API documentation on the web. In Proceedings
of the 2nd International Workshop on Web 2.0 for Software Engineering (Web2SE '11). Association for
Computing Machinery, New York, NY, USA, 25–30. https://doi.org/10.1145/1984701.1984706

[8] Tseng, C.-H., & Lin, J.-R. (2022). A semi-hierarchical clustering method for constructing knowledge
trees from stackoverflow. Journal of Information Science, 48(3), 393–405.
https://doi.org/10.1177/0165551520961035

https://doi.org/10.1145/2541348.2541357
https://doi.org/10.1145/3194707.3194713
https://doi.org/10.1145/1985793.1985907
https://doi.org/10.1145/1984701.1984706
https://doi.org/10.1177/0165551520961035

[9] Python official documentation, https://docs.python.org/3/library/index.html

[10] StackOverflow, https://stackoverflow.com

[11] StackOverflow data explorer, https://data.stackexchange.com/

https://docs.python.org/3/library/index.html
https://stackoverflow.com
https://data.stackexchange.com/

Permissions:

Rohith Pudari Vishal Kanna

permission to post video: Yes Wait till video is seen

permission to post report: Yes yes

permission to post source code Yes yes

