
Project Final Report
ECE 1786

Song Genre Classifier

Andrea Haw (1009238969)
Taikun Zhang (1004050643)

Word count: 1896 words
Penalty: 0%

December 13, 2022

1. Introduction

Music is an essential part of society and culture. Popular music streaming platforms such as
Spotify and Apple Music use song metadata to classify songs by their genres . The purpose of
our project is to create a classifier that will predict the music genre of a song given an input
sequence of its lyrics. The 8 genres that we chose for our classifier were: R&B, Pop, Rock, Hip
Hop, Blues, Country, Indie, EDM. Our application would be useful in recommendation
algorithms for suggesting new music based on a user’s genre preferences.

2. Illustration/Figure

Figure 1. Illustration of Model Architecture

3. Background and Related Work

While the music industry has focused on song genre classification using a combination of lyrics,
audio signals, and musical data [1], the efforts to predict song genre solely based on lyrics are
limited.

A project from Stanford attempted to create a classifier using a LSTM model and GloVe
embeddings [2]. Their dataset consisted of 6 different genres with songs in multiple languages.
During training, each song was given multiple genre labels to help with correct predictions. The
LSTM model was able to classify genres even with an unbalanced dataset but had difficulties
when trying to distinguish longer songs [2].

Another project used data from Million Song Dataset (MSD) to implement classification of
seven genres with Bag of Words and Part of Speech (POS) features [3]. After generating the
most common words and words tagged in POS, the results show that there are lyrical differences
between genres but also similarities [3]. A 65.71% accuracy was reported for the trained Naive
Bayes model [3].

1

4. Data and Data Processing

For our dataset, we took a combination of two datasets from Kaggle [4,5]. We filtered out
unrelated genres and songs that were not in english. After analyzing the number of data samples
per class, we scraped Spotify’s web API for more songs for genres that were underrepresented.
The number of data points per genre is shown below.

Figure 2. Number of data points per primary genre

Other things we included into our dataset were multiple genre labels for each song. Each song
has a field of a “primary” and “secondary” genre. This feature of the data is something we do
when fine-tuning our model because songs can fall under multiplier genres and this would
overall help the training of our model. Our data preprocessing involved tokenizing, padding,
removing stop words, and encoding the genres for our preliminary models. Here is an example:

Figure 3. Before and after of an example data point that is processed

2

When looking deeper into the data, some genres have more unique words than others.

Figure 4. Number of unique words per genre

There are also many common unique words per genre. We noticed that Rock, Indie, Pop and R&B were
very similar. Similarities between the lyrics of these genres were measured to be greater than 50%. Below
are some word clouds of the most common words in these genres.

Figure 5. Word Cloud for Pop Figure 6. Word Cloud for Rock

3

Figure 7. Word Cloud for Indie Figure 8. Word Cloud for R&B

5. Architecture and Software

We decided to focus our efforts on using state-of-the-art transformer models over LSTMs and
RNNs like previous work. We fine-tuned a distilled version of GPT-2 (DistilGPT2) with 2 linear
layers as the classification head. The base DistilGPT2 model has 6 layers, an embedding
dimension of 768, and 12 attention heads, with masked self-attention being applied in the
decoder blocks [6]. There are around 82 million parameters in total. To reproduce a model
similar to ours, one must first load the pre-trained “distilgpt2” model using the Huggingface
GPT2Tokenizer and GPT2 Model classes. An additional classifier head shown in figure was also
added to the model. Dropout was added with the intention of reducing overfitting.

Figure 9. Pytorch code for Classifier Head

A custom pytorch Dataset class was created for the specific lyric-genre dataset, and for the initial
model a training loop was created, using cross entropy as the loss function. To support training
with multiple labels, the cross entropy loss was calculated for each label (primary and secondary
if available) and the larger one was used for backpropagation. For the accuracy calculations, the
model prediction was accepted if it either matched the primary or secondary label.

4

Other software the team created included code to explore and analyze the dataset, and a basic
Gradio interface that takes an input of lyrics and outputs the predicted genre.

6. Baseline Model

For our baseline model, we decided to use a term frequency-inverse document frequency
(TF-IDF) model which statistically finds the relevance of each word in a given text. We used the
TF-IDF functions from sklearn and calculated frequencies as inputs for four simple classifier
models: Random Forests, MultinomialNB, LinearSVC, and LogisticRegression.
LogisticRegression gave the highest accuracy of 40.6 % and there was a lot of confusion in
classifying songs between Indie, Pop, and Rock. To give an idea of what the model uses to
distinguish between classes, Figures 10 and 11 show the feature importances for the top weighted
TF-IDF tokens.

Figure 10. Feature importances of the baseline model for the EDM genre

5

Figure 11. Feature importances of the baseline model for the R&B genre

7. Quantitative Results

For our baseline model, the highest accuracy achieved was 40.7% using Logistic Regression.
Looking at the accuracy per class and confusion matrix, it seemed like the baseline model had a
very hard time distinguishing between Pop, Rock, and R&B.

Figure 12. Precision and Confusion matrix for baseline model

The confusion matrix in Figure 13 shows the results of the DistilGPT2 model trained with
default hyperparameters and using only the primary genres as labels. Similar to the baseline, the
model performed quite poorly on the pop, R&B, Indie and rock genres. There is a fair amount of
confusion between these genres as shown by the higher percentage of incorrect labels among
these categories.

6

Figure 13: Confusion matrix for model trained on primary labels

The best performing model achieved was the DistilGPT2 version with tuned hyperparameters
with a test accuracy of 61.6%. The confusion matrix for the holdout test set is shown below, with
notable improvements in the Hip Hop and R&B categories.

Figure 14: Confusion matrix for final model trained with primary and secondary genre labels7

7

Figure 15a. Training and validation curves for Figure 15b. Training and validation curves for
the model trained on primary labels the final model

8

8. Qualitative Results

Figure 16. Example of correct Blues prediction

Figure 17. Example of incorrect prediction of Blues genre

Figure 18. Example of correct Rock song prediction

EDM:

Figure 19. Example of correct EDM song prediction

9

Figure 20. Example of incorrect prediction of EDM genre

9. Discussion and Learnings

The initial training and validation curves in Figure 15a clearly show the model being overfit in 4
epochs, which may seem odd if the neural network was trained from scratch, but is not surprising
considering this was a fine-tuning classification task. The validation accuracy is notably poor as
compared to the training accuracy, suggesting that the model is not generalizing on new data.
Regarding the final model’s loss and accuracy curves (Figure 15b), one could argue that the
model is still overfitting; however, the validation loss has not continually increased after each
epoch, and the accuracy increased by around 20 percentage points, from 43% to 63%. While
63% does not seem to be a convincingly successful number for accuracy, it is actually quite
commendable given the eight possible classes for the model to predict. The Stanford project
reported a 68% accuracy [2] for only three of the eight classes that were used in this project.

One of the main issues we addressed was the multi-label problem due to genre overlap. By
modifying the loss function and enabling multiple label prediction outputs for accuracy scores,
we were able to find a lift in performance. The genres not being mutually exclusive still poses a
problem for the final model. This is evident with the existence of many secondary genres for
songs and similar genres often being paired together as primary/secondary genres. We
experimented with training the model without the Indie and Pop genres in an attempt to improve
performance in distinguishing between songs, since Indie is considered a subgenre of Rock or
Pop, and Pop is representative of popular music, which may encompass different genres.
Performance did improve as expected when removing these two genres, but we kept all genres in
for comparison to address the original task at hand.

Based on the qualitative results, we see that the model is effective in identifying the patterns or
structure unique to different genres, as shown by its correct Blues, EDM and Rock predictions in
Figures 16-20. For example, the model was able to identify the repetition and words often used
in Blues and EDM songs. When we truncated the same input lyrics of the Blues song, the model
predicted Rock instead. The same observation holds for truncating the lyrics of an EDM song
and removing the element of repetition.

10

Table 1. Class distribution of common primary and secondary genres

Primary
Genre

Secondary
Genre

of songs

Indie Rock 4518

Pop R&B 2174

Rock Indie 1817

Hip Hop R&B 1802

Rock Blues 1493

R&B Pop 948

From the distribution of classes shown in Table 1, we note that Hip Hop and R&B, and Rock and
Blues are two pairs of genres that songs are often labeled together as, which makes sense
considering the history behind the musical styles.

Overall, we learned that the model was successful, but limited in its task of predicting genres - to
be accurate and more confident about these predictions, it would be best to use them alongside
other audio features to give stronger signals. We noticed how prevalent the risk of overfitting is,
even for 3-4 epochs when fine-tuning large transformer models for a specific task.

If we were to approach the project again, we would do a more thorough exploration of the data,
especially studying the types of words used in each genre for song lyrics so we could have more
time to solve the issue of overlapping classes. Also, we would refine our dataset to add songs
that are less controversial between 2 genres. Finally, adding extra features related to the song
lyrics such as length, verses vs chorus, and artist would help enrich our dataset and further
reduce overfitting.

11

10. Individual Contributions

Table 2. Individual contribution tasks

Task Person Responsible

Dataset curation from kaggle and queries Both

Querying Spotify API for songs and their genres Taikun

Querying Musixmatch API for song lyrics Andrea

Manual labeling and combining datasets Taikun

Processing and exploration of the classes/labels Andrea

Baseline model training Taikun

GPT2 model training Andrea

Interpreting and evaluating initial results Both

Bert model training Taikun

Multiple Label Training and Prediction Andrea

Analyzing Important Features of Baseline model Andrea

Analyzing Words in the Dataset Taikun

Wrote Gradio code for user side Taikun

We split up the tasks and worked in parallel to complete the project. The tasks were delegated
with divided efforts focusing on dataset, text, and label preparation in addition to training the
baseline and transformer models. The table above gives a more in depth division of the tasks and
responsibilities.

12

Permissions

Team Member Post Video? Post Final Report? Post Source Code?

Andrea Haw Yes Yes Yes

Taikun Zhang Yes Yes Yes

References

[1] S. Oramas, O. Nieto, F. Barbieri, and X. Serra, “Multi-label Music Genre Classification from
Audio, Text, and Images Using Deep Features,” ISMIR, Jul. 2017.

[2] A. Boonyanit and A. Dahl, “Music Genre Classification using Song Lyrics,” 2021.

[3] J. Yang, “Lyric-Based Music Genre Classification,” 2014.

[4] A. Neisse, “Song lyrics from 79 musical genres,” Kaggle, 17-Mar-2022. [Online]. Available:
https://www.kaggle.com/datasets/neisse/scrapped-lyrics-from-6-genres. [Accessed:
16-Nov-2022].

[5] M. Nakhaee, “Audio features and lyrics of Spotify Songs,” Kaggle, 14-Jun-2020. [Online].
Available:
https://www.kaggle.com/datasets/imuhammad/audio-features-and-lyrics-of-spotify-songs.
[Accessed: 16-Nov-2022].

[6] Huggingface, “Transformers/examples/research_projects/distillation at Main ·
Huggingface/Transformers,” GitHub. [Online]. Available:
https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillatio
n#how-to-use-distilbert. [Accessed: 21-Nov-2022].

[4] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter,” Workshop on Energy Efficient Machine Learning and
Cognitive Computing - NeurIPS 2019, Mar. 2020. Available:
https://doi.org/10.48550/arXiv.1910.01108.

[5] A. Boonyanit and A. Dahl, “Music Genre Classification using Song Lyrics,” 2021.

13

