
ECE1786

Creative Applications of Natural Language Processing

Final Project Report

Dev GPTeam

Tianxiang(Tim) Guo 1005022627

Tung Hoi (Alan) Yeung 1009474944

Word count: 1978

Penalty: 0

Permission
Name Permission to post

video
Permission to post final
report

Permission to post
source code

Tianxiang(Tim) Guo Yes Yes Yes

Tung Hoi (Alan) Yeung Yes Yes Yes

1. Introduction

The goal of this program is to create Dev GPTeam, an application designed to develop
Python mini-games using the advanced capabilities of GPT-4. This application aims to
demonstrate how GPT-4 can be utilized not just as a coding tool but as an integral part
of a software development team, taking on roles from conceptualization to code
generation. Our focus is on ensuring that Dev GPTeam can interpret high-level
requirements through interactive discussions and autonomously produce mini-games
that closely align with user needs.

Figure 1: Dev GPTeam Illustration. GPT-4 is prompted to have three different roles: product manager,
developer, and QA engineer to transform user requirements to operable games.

2. Background & Related Work

Large language models (LLM), particularly GPT-4, represent a paradigm shift in artificial
intelligence, fundamentally altering the landscape of natural language processing. LLMs
exhibit unprecedented proficiency in text understanding and generating, significantly
broadening its applicability in the realm of software development.

Recent strides in language model-based code generation have been significantly
influenced by Codex, the core technology behind GitHub Copilot, optimized
predominantly for Python code writing [1]. Despite its advancements, studies indicate
that GitHub Copilot, while competent in problem-solving, faces challenges in
synthesizing various programming methods into unified, coherent solutions [2]. On the
other hand, MetaGPT emerges as a transformative multi-agent framework that elevates
automation in intricate software development processes. However, it falls short in areas
such as establishing a comprehensive code environment and effectively executing
practical test cases [3].

3. Software Architecture

3.1 System overview
Inspired by the concept of LLM-based Autonomous Agents[4], the uniqueness of Dev
GPTeam lies in its active engagement with users. This approach ensures that
requirements are more concrete and comprehensive, thereby achieving better
requirement fulfillment and improved code generation quality.

The system architecture of Dev GPTeam is clearly illustrated in Figure 2. Initially, a user
provides a basic requirement. The Product Manager GPT then asks additional
questions for clarification. Once the requirements are clearly defined, the Product
Manager GPT forwards them to the Developer and QA GPT. The Developer GPT
generates the code, and the QA GPT reviews it, fixing any potential bugs. The final
code is then generated and written to a directory for user access. Additionally, we
provide a checkpoint feature, allowing the user to restart from any stage.

Figure 2: A Sequence Diagram Illustrating the System Architecture of Dev GPTeam

3.2 Software Flow Example
The diagram below provides a detailed workflow of Dev GPTeam, illustrated through the
example of developing a Brick Breaker game.

Figure 3: A diagram showing the example flow of Dev GPTeam building a Brick Breaker game.

3.3 Development of Role Profiles and Chain-of-Thoughts Prompts
PM, Developer, and QA are the three major GPT roles in Dev GPTeam. Different
system contexts and user prompts need to be configured to accomplish the goal. As an
example, we provide the settings for PM GPT below. (See Appendices A to C for
detailed setups for all roles.)

PM GPT System Content
“Role: You are a project manager specializing in mini-game software development,
focusing on detailed gameplay mechanics for desktop applications. Here's how you
operate:

1. **Initial Concept Discussion with Client**: Engage with clients to understand their
initial game idea....

2. **Detailed Information Clarifying and Gathering with Client**: Ask precise questions to
clarify the game's genre, target audience…

3. …”

4. Data & Evaluation
4.1 Software Requirement Collection
We collected 10 mini-games as the use cases for our system, for example, Snake,
Brick Breaker, 2048, Flappy Bird, Tank Battle, etc.

For each game, we came up with 8 to 12 requirements based on the original classic
game, including game initializations, game mechanics, game over conditions, and user
interfaces.

As an example, the requirements for Brick Bricker are:

1. Game Initialization: The game must initialize with bricks arranged in a specific
pattern (rows and columns) on the screen.

2. Paddle Control: Players should be able to control the horizontal movement of a
paddle using keyboard, mouse, or touch inputs.

3. Ball Mechanics: A ball must bounce off walls, the paddle, and bricks, following
proper physics for reflection angles.

4. Brick Collision: When the ball collides with a brick, the brick should disappear,
and the player's score should increase.

5. User Interface: The game should display the current score, number of lives, and
any relevant instructions or buttons (e.g., start, restart).

6. ….
7. ….
8. ….

More requirement examples can be found on the project Github page.1

4.2 Evaluation Approach
We assess the quality of generated code using Requirement Recall/Fulfillment Rate,
which is calculated by dividing the number of requirements met by the total number of
requirements:

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑀𝑒𝑡
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

Furthermore, PM GPT's performance will also be evaluated based on the recall
percentage, reflecting the proportion of understood requirements relative to the total
collected requirements.

5. Comparison Method

To evaluate the quality of code generated by our method, we will use two baseline
methods for comparison.

1. Direct GPT-4 Interaction via ChatGPT
Naively input instructions into ChatGPT[5] like "develop a Flappy Bird game".

1 https://github.com/ece1786-2023/DevGPTeam/tree/main/software-requirement-samples

https://github.com/ece1786-2023/DevGPTeam/tree/main/software-requirement-samples

2. Enhanced GPT-4 Interaction via ChatGPT
Input specific role profiling and Chain-of-Thoughts[6] workflow guidance

(Appendix D) before inputting the instructions.

For each game and method, we generate the game three times, and select the best one
for comparison. The code generated from all three methods/models could be found in
the Github folder.234

We expect that Dev GPTeam will outperform the baseline methods in terms of
Requirement Recall Rate.

6. Result

6.1 Quantitative Results
Table 1 presents a comparative evaluation of our methods against baseline methods.
Specifically, in the third column, our system's competency in requirements
understanding is assessed. Notably, in the final results column, the presence of stars
signifies instances where the code generated by Dev GPT encountered failures, which
were subsequently rectified by QA GPT.

The comparison highlights that our methods surpass the baseline in all tested games,
successfully meeting the majority of the specified requirements. However, notable
exceptions are observed in the games "Tank Battle" and "Tetris". In these cases, while
our system demonstrated a substantial understanding of the requirements, it
accomplished only a limited number of them during gameplay. This discrepancy
underscores existing limitations in our system's ability to handle the complexity involved
in the development of certain types of games.

4 Dev GPTeam:
https://github.com/ece1786-2023/DevGPTeam/tree/main/workspace-dev-gpteam

3 Enhanced GPT-4 Interaction via ChatGPT:
https://github.com/ece1786-2023/DevGPTeam/tree/main/workspace-chatgpt-chain-of-thought

2 ChatGPT:
https://github.com/ece1786-2023/DevGPTeam/tree/main/workspace-chatgpt-naive

Table1: Comparison of requirement recall rate for Dev GPTeam and baseline methods.

Game
Baseline
ChatGPT

ChatGPT with
Chain of
Thought

Dev GPTeam

Requirement
Understanding （

PM) Final Result

Snake game 7/11 (63.6%) 8/11 (72.7%) 9/11 (81.8%) 10/11 (90.9%)

2048 3/8 (37.5%) 5/8 (62.5%) 8/8 (100%) 7/8 (87.5%)

Flappy Bird 6/10 (60%) 8/10 (80%) 9/10 (90%) * 9/10 (90%)

Tank Battle 2/12 (16.7%) 2/12 (16.7%) 11/12 (91.7%) * 5/12 (41.7%)

Asteroid Dodger 4/10 (40%) 4/10 (40%) 8/10 (80%) 7/10 (70%)

Pong Game 5/10 (50%) 7/10 (70%) 10/10 (100%) 9/10 (90%)

TETRIS 0/10 (0%) 0/10 (0%) 8/10 (80%) 3/10 (30%)

Brick breaker with
power-ups 6/9 (66.6%) 6/9 (66.6%) 8/9 (88.9%) 9/9 (100%)

Varied Game:
Gomoku (Connect 4
instead of 5) 4/8 (50%) 4/8 (50%) 7/8 (87.5%) * 7/8 (87.5%)

Mixed Game: Flappy
Bird + Asteroid
Dodger 1/8 (12.5%) 4/8 (50%) 8/8 (100%) 7/8 (87.5%)

Total Fulfillment 38/96 (39.6%) 48/96 (50%) 86/96 (89.6%) 72/96 (76%)

6.2 Qualitative Results

PM GPT efficiently facilitated user interactions for requirement gathering, demonstrating
accuracy in summarizing complex requirements by meeting 89.6% of the requirements.
The subset of requirements that PM GPT did not explicitly identify predominantly
consisted of common-sense elements, often overlooked by users. A typical example
includes specifications regarding the speed of game entities like snakes, balls, or birds,
which should be calibrated for optimal human reaction time. Notwithstanding these

oversights, the dialogue between users and PM GPT was markedly effective, playing a
pivotal role in establishing well-defined development objectives.

Figure 4: Demo game screenshots developed by Dev GPTeam.

Developer GPT showed strong capability in translating requirements into operable code.
It proficiently handled a broad range of tasks, showcasing its utility in the coding phase
of development. However, its performance in more complex scenarios, such as
developing the 'Tank Battle' game, which necessitates sophisticated enemy AI,
highlighted areas for improvement in managing intricate aspects of game development.
This observation underscores the need for further refinement in Developer GPT’s
approach to complex game mechanics and AI implementation.

QA GPT played a key role in bug identification and correction, contributing to the overall
requirement fulfillment. Its effectiveness varied with the complexity of the project and the
base code quality, suggesting a dependency on Developer GPT's initial output.

The collaborative interaction between PM GPT, Developer GPT, and QA GPT
exemplifies a functional large language model (LLM)-driven development framework.
This synergy is effective in executing straightforward projects, evidencing the system’s
competence in standard development tasks. However, when tackling complex game

development challenges, the system's current capabilities reveal opportunities for
further refinement and enhancement, particularly in areas requiring more sophisticated
problem-solving and technical intricacies

7. Discussion

7.1 Overall
The overall performance of Dev GPTeam meets our expectations. It transforms the user
instruction into operational software.

7.2 Assistant API [7]
We also experimented with the recently announced Assistant API by OpenAI. However,
due to its incapabilities to adjust parameters like temperature and top_p, we found that it
fails to meet our needs. In addition, although the Assistant API can use tools like Code
Interpreter that runs Python, it lacks the functionality to import additional libraries. Given
these constraints, we opted to continue using model API calls for our system.

7.3 PM GPT
We addressed the challenge of concluding PM GPT's requirement-clarifying
conversations by introducing a specific marker, “<REQ_Start>.” PM GPT continues the
conversation until it generates this marker, indicating the client's approval and signaling
the system to transition from conversation to the code generation phase with Dev GPT.

7.4 Developer GPT
One of the biggest challenges we faced in code generation was that Developer GPT
would produce incomplete code, significantly affecting the functionality of the generated
code.

Figure 5 and 6: Two screenshots illustrating the issue of incomplete code in GPT-4 code generation. The
functions here are filled with 'pass' statements and comments, rather than complete code implementation.

We tried various approaches, such as tuning the temperature and top_p parameters
and setting a minimum number of lines of code to be produced, but GPT's behavior did
not change. Ultimately, we addressed the issue by repeating the phrase 'PLEASE
PROVIDE COMPLETE CODE' three times in the user prompt.

Figure 7: The prompting solution for fixing incomplete code issues

We've identified several issues with code generation using Developer GPT. Firstly,
gaming objects sometimes move too quickly for user interaction. Secondly, there are
occasional code formatting errors. Lastly, the generated code assumes the existence of
asset files like ‘background.png’, prompting a decision on whether to provide these
assets or not. This highlights the need to further refine our prompts.

7.5 Impact of Temperature and Top_p on code generation
We were curious about how the temperature and top_p parameters would affect the
behavior of Developer GPT. To explore this, we conducted an experiment with the Brick
Breaker game, focusing on the performance of requirement fulfillment. For simplicity, we
set both temperature and top_p to the same values, ranging from 0.1 to 0.9, and
generated three iterations for each setting.

Table 2 summarizes the results, revealing that Developer GPT performs best with
values of 0.3 and 0.5. Please note that these values are for reference only; a broader
range of combinations, such as temperature values from 1 to 10, should be considered
to achieve optimal results.

Table2: Performance Evaluation of Developer GPT Across Different Temperature and Top_p Settings for
the Brick Breaker Game

Temperature
and Top P value

Final Result
(Requirement

Fulfillment Rate)

Comments

0.1 8/9 (88.89%) Missing power-up features

0.3 9/9 (100%) No big issues found

0.5 9/9 (100%) No big issues found

0.7 7/9 (77.78%) 1. Generation failed once
2. Issue with displaying lives and score

properly (user interface).
3. Player wins the game without breaking

all the bricks (winning condition).

0.9 7/9 (77.78%) 1. Generation failed once
2. Issue with displaying lives and score

properly (user interface).
3. Player doesn't win the game after

breaking all the bricks (winning
condition).

8. Learning & Improvement
The current state of the Dev GPTeam is far from perfect, with every part having room for
improvement.

8.1 Provide a UI for updating the requirements
One of the limitations is that after the user interacts with PM GPT, there is no way for
them to fine-tune the requirement. The only options are to restart the entire requirement
clarification process or manually modify the checkpoint file. Allowing users to update
previous requirements when reading from checkpoint files would be much more useful.

8.2 Explore the possibility of introducing a System Architect GPT
Currently, Developer GPT struggles to generate code for complex games like Tetris. It
tends to generate all code within a single file, which makes the code hard to maintain.

We are considering whether performance could be enhanced by introducing a System
Architect GPT to create a project structure. This structure could then be used to guide
the Developer GPT to generate files individually.

8.3 Adopt iterative debugging
It is possible that users will still face some code issues even after the QA has reviewed
the code. We could redesign the system’s flow to allow users to report what they have
come across to QA GPT and request additional code generation.

9. Individual Contributions
The two team members equally distributed the workload and collaborated effectively to ensure
the successful completion of the project.

Table 2. Tasks accomplished

Sub-tasks Tim Alan

1 Collect High-Level
Needs

✔ ✔

2 Baseline methods
testing

✔ ✔

3 Develop Profiles and
Context Prompts

✔ ✔

4 PM GPT coding ✔

5 Dev GPT coding ✔

6 QA GPT coding ✔ ✔

7 Checkpoint Feature ✔

8 User Interface Design ✔

9 Testing and Evaluation ✔ ✔

10 Documents and Report ✔ ✔

References
[1]
M. Chen, J. Tworek, H. Jun, et al., "Evaluating Large Language Models Trained on Code," arXiv
preprint arXiv:2107.03374, Jul. 2021. [Online]. Available: https://ar5iv.org/abs/2107.03374.
[Accessed: 11-Dec-2023].

[2]
A. M. Dakhel, V. Majdinasab, A. Nikanjam, et al., "GitHub Copilot AI pair programmer: Asset or
Liability?," arXiv preprint arXiv:2206.15331, 2023. [Online]. Available:
https://arxiv.org/abs/2206.15331. [Accessed: 11-Dec-2023].

[3]
S. Hong, X. Zheng, J. Chen, et al., "MetaGPT: Meta Programming for Multi-Agent Collaborative
Framework," arXiv preprint arXiv:2308.00352, 2023. [Online]. Available:
https://arxiv.org/abs/2308.00352. [Accessed: 11-Dec-2023].

[4]
L. Wang et al., "A Survey on Large Language Model based Autonomous Agents," arXiv preprint
arXiv:2308.11432, 2023. [Online]. Available: https://arxiv.org/pdf/2308.11432.pdf. [Accessed:
11-Dec-2023].

[5]
OpenAI, "ChatGPT (November 6 version)," Large language model, 2023. [Online]. Available:
https://chat.openai.com/. [Accessed: 11-Dec-2023].

[6]
J. Wei et al., "Chain of Thought Prompting Elicits Reasoning in Large Language Models," arXiv
preprint arXiv:2201.11903 [cs], Oct. 2022. [Online]. Available: https://arxiv.org/abs/2201.11903.
[Accessed: 11-Dec-2023].

[7]
OpenAI, "Assistants Overview," OpenAI Documentation, 2023. [Online]. Available:
https://platform.openai.com/docs/assistants/overview. [Accessed: 11-Dec-2023].

https://ar5iv.org/abs/2107.03374
https://arxiv.org/abs/2206.15331
https://arxiv.org/abs/2308.00352
https://arxiv.org/pdf/2308.11432.pdf
https://chat.openai.com/
https://arxiv.org/abs/2201.11903
https://platform.openai.com/docs/assistants/overview

Appendix A: Project Manager GPT Configuration
Parameter settings
Temperature: 0.7
Top_p: 0.5

System Context
Role: You are a project manager specializing in mini-game software development, focusing on detailed
gameplay mechanics for desktop applications.
Here's how you operate:

1. **Initial Concept Discussion with Client**: Engage with clients to understand their initial game idea,
including genre, and envisioned features.
Assume the game's platform is a desktop application and confirm this with the client. Monetization and
social features should be NOT discussed unless specifically requested by the client.

2. **Detailed Information Clarifying and Gathering with Client**: Ask precise questions to clarify the
game's genre, target audience, key features, and unique elements.
Assume pixel-art style and no sound effects.

3. **Clarifying and Listing Gameplay Mechanics with Client**: Delve deeper into gameplay mechanics
with the client.
Then, list at least eight detailed gameplay mechanics to clarify, including aspects like game initialization,
player progression, challenges and objectives,
control schemes, scoring systems, ending conditions and restarting, and interaction mechanics.

4. **Refining and Confirmation with Client**: Analyze responses and refine the understanding with further
detailed inquiries.
Summarize the updated understanding, with detailed gameplay mechanics, and seek a clear confirmation
from the client to end the requirement clarifying process.

5. **Finalizing Requirements with Development Team**: After confirming the requirements with the client,
translate the ideas into structured technical requirements for the development team. Use the following
format:

<REQ_START>
one line summary of the game
```
# Number list of requirements
```
<REQ_END>

Avoid discussing technical details with the client in the earlier steps. Repeat steps 2 to 4 as necessary,
based on the client's inputs and confirmations,
until clear and detailed gameplay mechanics are established. Run steps 1 to 4 at least one time.
This iterative process ensures a comprehensive understanding of the client’s vision.

Appendix B: Developer GPT Configuration
Parameter settings
Temperature: 0.3
Top_p: 0.3

System Context
NOTICE
Role: You are a professional software engineer; the main goal is to write complete Python 3.9 code.
Output format strictly follows "Format Example".

Write code within base on the following list and context.

1. You may output more than one file, but please use '<FILE_START>' and '<FILE_END>' tags to
separate them.
2. Your code must be able to run end-to-end.
3. IMPORTANT: Put your generated project folder name between '<PROJECT_NAME_START>' and
'<PROJECT_NAME_END>' tags.
4. Replace 'GENERATED_FILE_NAME' with the file name you propose.
5. Please assume the user will run the program by executing main.py, so put the main class inside
main.py.
6. Please assume all graphics will be in pixels; avoid using extra assets like .png, .wav files.
7. Attention1: ALWAYS SET A DEFAULT VALUE; ALWAYS USE EXPLICIT VARIABLES.
8. Attention2: PLEASE IMPLEMENT COMPLETE CODE; FUNCTIONS THAT ONLY PASS
STATEMENTS AND COMMENTS ARE NOT ACCEPTED.

Format Example:

<PROJECT_NAME_START><PROJECT_NAME_END>
<FILE_START>
GENERATED_FILE_NAME
```python
# your code here
```
<FILE_END>
<FILE_START>
GENERATED_FILE_NAME
```python
# your code here
```
<FILE_END>

User Input Prompt
{{software requirements from PM GPT}}

Additional requirements:
1. Place your generated project folder name between '<PROJECT_NAME_START>' and
'<PROJECT_NAME_END>' tags.
2. Ensure the output format strictly follows the "Format Example" provided in your context or instructions.
3. Assume that all graphics will be in pixels; avoid using extra assets like .png or .wav files.
4. Attention1: PLEASE PROVIDE COMPLETE CODE, PLEASE PROVIDE COMPLETE CODE, PLEASE
PROVIDE COMPLETE CODE.

Appendix C: QA GPT Configuration
Parameter settings
Temperature: 0.1
Top_p: 0.1

System Context
Your role is a professional quality assurance engineer for Python and Pygame mini-games. You will be
provided with a list of requirements and some codes. you need to review the code for
1. code operability: correct display and graphics, make sure variables and functions are correctly
initialized
2. gameplay functionality: make sure all requirements are satisfied
3. generate the COMPLETE final code (DO NOT skip existing codes! DO NOT skip existing codes! DO
NOT skip existing codes!)
4. output in this structured format:

<PROJECT_NAME_START><PROJECT_NAME_END>
<FILE_START>
GENERATED_FILE_NAME
```python
# your code here
```
<FILE_END>
<FILE_START>
GENERATED_FILE_NAME
```python
# your code here
```
<FILE_END>

Appendix D: ChatGPT Baseline Method Role Profile
and Chain-Of-Thought Prompts
###Role
Full Stack Software Engineer Master

##Background
A Full Stack Engineer is responsible for managing the complete software development cycle, turning
high-level visions into functional software through stages of development, review, and testing.

##Goals
1. Convert user visions into actionable development tasks.
2. Develop functional and efficient Python code.
3. Conduct systematic code reviews for quality assurance.
4. Execute comprehensive testing to ensure software reliability.
##Skills
1. Proficiency in full-stack technologies and methodologies.
2. Ability to analyze, plan, and organize development tasks.
3. Strong communication for effective user engagement and feedback.
4. Proficiency in Python.

##Workflows
1. Receive and clarify user visions, creating detailed development tasks.
2. Develop code and inform the user upon completion, proposing a code review.
3. Conduct the review, optimizing code quality and functionality.
4. Propose and conduct systematic testing, identifying and correcting issues for optimal software
performance.
5. Maintain user engagement, ensuring the end product aligns with user expectations, making necessary
adjustments based on feedback.

Appendix E: Full Example Walkthrough

Step 1: Display greeting message and receive sample user input.

Step 2: PM GPT requests additional information and receives sample user responses.

Step 3: PM GPT delves into the specific game mechanics and requirements.

Step 4: PM GPT iteratively clarifies the detailed requirements and asks for user
confirmation.

Step 5: PM GPT finalizes requirements and passes them to Developer GPT.

Step 6: Developer GPT generates and outputs the source code

Step 7: QA GPT reviews the code, make necessary improvement, and output the final
version

Step 8: Code generation is completed, and the software is ready to run.

