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1 Introduction

Access to healthcare is universally acknowledged as a fundamental human right. However, financial
constraints often obstruct timely medical interventions, creating a critical gap in healthcare accessibility.
In response to this challenge, crowdfunding platforms have emerged as innovative avenues for individuals
to secure necessary funds for their medical expenses. This paper presents a comprehensive study
focusing on the pivotal role of campaign narratives in influencing the success of medical crowdfunding
initiatives.

Our primary objective is to predict the probability of success for medical crowdfunding campaigns.
In this context, a campaign is considered successful if the amount raised meets or surpasses its stated
financial goal. Early identification of unsuccessful campaigns enables strategic interventions, such
as narrative enhancement or intensified marketing efforts, to augment their likelihood of success.
Natural language Processing (NLP) tools are particularly apt for this task because they can help
discern complex patterns in large datasets, which might not be immediately apparent through
traditional analysis.

Our architecture employs a scrapper module to extract key metadata from medical crowdfunding
campaigns, which are then fed into our main model to calculate the probability of campaign success.
An illustration of our proposed system is shown in Fig. 1

Figure 1: Our proposed system pipeline.

2 Related Work

In exploring the relatively uncharted domain of surgical crowdfunding campaigns, a study [1] gathered
a dataset of 66,514 campaigns from 2010 to 2020, which raised $354.8 million out of a total of
one billion dollars. This research innovatively applied NLP techniques, specifically using a binary
classification Long Short-Term Memory (LSTM) network. It utilized word embeddings derived from
campaign texts to predict the success of these campaigns, achieving an accuracy of 0.6042 and an F1
score of 0.3766. This study leverages deep learning to predict the success of surgical crowdfunding
campaigns. However, the relatively low F1 score of 0.3766 suggests the dataset was unbalanced. In
such scenario, accuracy can be misleading, and the model’s predictive performance may not be as
robust as it appears, necessitating a more nuanced approach to evaluating model efficacy.
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Complementing this, another study [2] focused on the success prediction of broader crowdfunding
projects using Multimodal Deep Learning (MDL). It integrated heterogeneous textual and visual
information, employing a pre-trained 16-layer VGG model for visual features and Bag of Words
(BoW) with Term Frequency-Inverse Document Frequency (TF-IDF) and word embedding for textual
representation. While the MDL model showcased superior performance compared to other methods,
highlighting the efficacy of multimodal deep learning in forecasting crowdfunding project outcomes,
our research focus is distinctly on the narrative aspect of campaigns.

3 Dataset

The dataset encompasses the URL, title, campaign description, as well as financial metrics such as the
goal and raised amounts, offering a comprehensive snapshot of each crowdfunding initiative. After
processing 1.4 million URLs, we had 80 thousand balanced samples, half of which were successful.
A sample of our dataset is shown in Fig. 2.

Figure 2: A Sample from our dataset.

3.1 Data Processing

The data collection and preprocessing for our study on medical crowdfunding campaigns involved
an initial phase of URL retrieval from GoFundMe along with leveraging the Internet Archive’s
WayBackMachine to access historical campaigns. Subsequent steps focused on refining this dataset
to include only relevant campaigns. Specifically, those within the medical category that were written
in English and were raised in USDs. This targeted approach was designed to ensure data uniformity
and relevance to the study’s objectives. The processed data underwent further analysis, generating
descriptive visualizations such as histograms and word clouds to reveal underlying patterns and
trends within the campaigns.

We also applied additional preprocessing steps, including removal of emojis and non-standard
ASCII characters, elimination of stop words, and tokenization. Then, we applied padding to ensure
uniform input length for the models. In the end, we split the data into training, validation and test
set in a 80%, 10%, 10% ratio, respectively. Fig. 3 is an illustration of our data processing pipeline.

3.1.1 Insights

We extracted some interesting insights from the data:

• Out of the campaigns that have a goal exceeding $100,000, approximately 56.20% of them
contain the words ”surgery” or ”cancer” in their descriptions as depicted in Fig. 4a.

• The average goal set for successful campaigns is about $8,042.33, whereas the average goal set
for unsuccessful campaigns is about $48,150.24 as shown in Fig. 4b.
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Figure 3: Data processing pipeline.

• The average goal amount set across all campaigns is approximately $28,095.97.

(a) Percentage of campaigns over $100k with keywords
”surgery” or ”cancer”.

(b) Average vs median goal amounts by campaign
outcome.

Figure 4: Data statistics

4 Models

4.1 Baseline Models

4.1.1 Shallow Neural Network (SNN) Model

For the initial baseline model, we employed a word embedding model, specifically GloVe [3], to
function as the fundamental backbone. Following this, we computed average embeddings associated
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with the words present in the campaign’s narrative, which were then input into a two-layer neural
network classifier with a dropout layer of p = 0.5 in between, as depicted in Fig. 5a.

4.1.2 Long short-term memory (LSTM) Model

We have chosen our second baseline as an LSTM-based model, aiming to enhance the modeling of
temporal dependencies, namely the contextual aspects of the narrative, in our task. The LSTM
model starts by embedding each word in the campaign narrative, then an LSTM layer processes each
embedded vector individually. Thereafter, the last hidden state is projected to a fully connected
layer for predicting the success probability of a campaign, as illustrated in Fig. 5b.

(a) SNN, adopted from [4]. (b) LSTM, modified from [5].

Figure 5: Baseline models architecture.

4.2 Main Models

Our primary model is the Text-To-Text Transfer Transformer (T5) [6], a cutting-edge architecture
that has demonstrated state-of-the-art performance across various NLP tasks. Notably, T5-11B has
achieved the highest accuracy on the Stanford Sentiment Treebank (sst-2) [7], a widely recognized
benchmark for sentiment analysis. This success motivated our decision to leverage the pre-trained
smaller versions, specifically the ’small’ and ’base’ variants of T5, for our task. This choice enables us
to effectively capture intricate narrative patterns and details, surpassing the capabilities of baseline
models.

In addition, we incorporated A Lite Bidirectional Encoder Representations from Transformers
(ALBERT)-base model [8], a parameter-reduced version of the original BERT model designed for
improved efficiency with lower GPU memory footprint and faster training. T5 and ALBERT models
underwent extensive experimentation, involving training the entire set of model parameters (end2end)
or focusing solely on training the classifier layers (clf). The hyperparameters for T5, ALBERT, and
baseline models are detailed in Table 1.

For both T5 and ALBERT, we accessed the models and tokenizers through the Hugging Face
Transformers library [9]. T5 models were trained on different Colab accounts using a 16-GB T4
GPU, while ALBERT was trained on Kaggle using a P100 16-GB GPU. The input variable, denoted
as x, for both models, consisted of the goal amount and campaign narrative combined, aiming to
predict the likelihood of a campaign being either successful or not, denoted as p(y|x), where y
represents the campaign class (1 for successful and 0 for unsuccessful). This relationship is visually
depicted in the block diagram in Fig. 1.
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Hyperparameter SNN LSTM T5 & ALBERT
Embedding Dimension 300 256 Default
Learning Rate 1e-3 4e-5 1e-4
Learning Rate Scheduler Cosine Cosine Cosine
Weight Decay 0 0 0.1
Epochs 50 30 5
Batch Size 256 256 16
Sequence Length 512 512 512
GloVe Model 6B - -

Table 1: Models Hyperparameters

4.3 Generative Pre-trained Transformer (GPT) Model

A GPT-based classifier was also explored to analyze the characteristics of crowdfunding campaign
descriptions to predict their success. Notice that in the main model, the output is the probability
of success but in this GPT-based model the output is binary (successful or not). It employs
a chain-of-thought prompting approach, where the model is first primed with detailed criteria
distinguishing successful and unsuccessful campaigns, considering factors like title clarity, description
detail, and goal amount realism. After setting this context, it is provided with the title, description,
and goal amount of a specific campaign to determine its likelihood of success. However, a critical
observation of this classifier is its tendency to predict a campaign as successful, which could indicate
a bias in the model. Our prompt can be found under the gfm-gpt-classfier.py script.

5 Results

The learning curves for both the baseline models and primary models are presented in Fig.s [6] and
[7], respectively. Additionally, classification metrics for all models on the test set are summarized
in Table 2. Examination of results reveals that baseline models exhibited poor performance on our
balanced test set, achieving accuracy scores of 0.547 and 0.603, for the SNN and LSTM models,
respectively.

Notably, training only the classification layers of T5-small yielded the highest accuracy at 0.728
on the test set. Furthermore, all other language models demonstrated accuracies exceeding 0.7 when
compared to the best baseline model, LSTM, which achieved a score of 0.603.

Our data ablation studies confirmed that incorporating the goal amount with the description
significantly benefitted language models, resulting in an accuracy increase of 5-6%. Examples of
predictions made by the T5-small-clf model are showcased in Fig. 8.

Model Acc F1 AUC #Params
Shallow Neural Network 0.547 0.628 0.582 90.6K
LSTM 0.603 0.605 0.642 2.8M

ALBERT-base-end2end 0.707 0.707 0.787 11.8M
T5-small-clf 0.728 0.716 0.806 60.5M
T5-small-end2end 0.723 0.713 0.806 60.5M
T5-base-clf 0.718 0.712 0.799 223M

Table 2: Models performance on test set.
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(a) SNN (b) LSTM

Figure 6: Learning curves for the baseline models
.

Figure 7: Learning curves for T5 and ALBERT models.

(a) Correctly classified. (b) Incorrectly classified.

Figure 8: Samples from T5-small-clf predictions.
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6 Discussion and Learnings

LSTM exhibited a noteworthy performance advantage, surpassing the SNN model by more than
5.5% in accuracy. This underscores the significance of the narrative context, emphasizing that the
arrangement of words provides more informative cues than assigning equal weights to words regardless
of their order, as employed in the SNN model.

Remarkably, the language models achieved accuracy and F1 scores exceeding 70%, along with AUC
values surpassing 78%. This signifies their capability to discern successful campaigns based solely
on their goals and descriptions. Intriguingly, end-to-end training of ALBERT-base, with a modest
parameter count of 12 million, successfully captured the patterns distinguishing between the two
campaign classes. Additionally, end-to-end training was not imperative for T5-small; training only
the classifier head and preserving pretraining knowledge proved superior. While we acknowledge that
further exploration of training durations for T5-base could potentially yield enhanced performance,
resource limitations constrained us from extensive finetuning. A single trial with 3 epochs alone
could take more than 18 hours to complete.

In examining samples in Fig. 8a, it is evident that the model adeptly captures the tendency of
individuals to support severe cases, particularly those related to cancer or surgery, as we illustrated
previously in Fig. 4a. This may explain its prediction of success for the second example while
predicting the first as unsuccessful. After analyzing misclassified narratives in Fig. 8b, we observed
that the first narrative involved an individual initially diagnosed with an autoimmune disease and
later with cancer. This shift in medical history may have led to model confusion. In the second
example, related to a breast cancer campaign, the model predicted success; however, the title wasn’t
captivating, consisting only of the person’s name and ”Fight.” We assert that a compelling title is a
crucial element contributing significantly to the success and better marketing of a campaign.

An area for enhancement involves prompt engineering. Current GPT-based model prompts can be
further optimized by examining campaign descriptions in greater depth. Additionally, expanding
the outcome categories beyond a binary classification could provide a richer, more dimensional
analysis of campaign success. Transforming the classifier into an analyzer, which instead of predicting
outcomes, provides insights into the strengths and weaknesses of campaign descriptions, could offer
more actionable guidance for campaign organizers.

Our task is inherently complex compared to similar tasks, such as sentiment analysis, where
language models can infer sentiment based on certain keywords. In fact, examining word clouds
for the two classes of narratives (Fig. 9) reveals a high degree of similarity in the most frequent
words. To address the need for capturing more intricate patterns to differentiate between classes, we
advocate for the integration of additional modalities—specifically, a campaign’s image and metadata.
Such integration, as studied in [2], has the potential to enhance performance over depending solely
on the description of campaigns.

7 Contributions

Mohamed

• Project conceptualization and management.

• Optimized data scrapper code to utilize multiprocessing.

• Developed the SSN, T5, and ALBERT models.

• Trained all models to yield the best performance for each.
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(a) Successful campaigns. (b) Unsuccessful campaigns.

Figure 9: Campaigns’ narrative word cloud.

Xiaohan

• Implemented data scrapper script.

• Optimized data scrapper code to utilize fake user agent.

• Analyzed data to extract insights.

• Preprocessed data for baseline models.

• Developed LSTM and GPT models.
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