
GenPerfectTrip

Final Report

Yiwei He, Junhong Chen

December 12, 2023
word count: 1860



1 Introduction

Trip preparation can sometimes be extremely tedious and time-consuming,
especially when planning to travel to a place that you had no previous experience
with. GenPerfectTrip is a project that aims to generate, and construct detailed,
personalized trip plans based on users’ input of their trip preferences. The users
can also interact with the system to build onto the preliminary plan to further
improve the generated plan.

1



2 Illustration

Figure 1: Architecture for the Preliminary Plan Generator

Figure 2: Architecture for the Improved Plan Generator

2



3 Background and Related Work

Prompt engineering is a technique of crafting inputs to elicit desired outputs
from generative models. It helps tune the models to give more accurate outputs
and improve the overall output quality for specific complex tasks, which there-
fore is widely used in the real of applications of natural language processing.
Prompt engineering is not just redesigning and reconstructing prompts, it also
contains a wide range of skills and patterns to be able to guide the models to give
better outputs. White (2023) and his colleagues came up with multiple prompt
engineering techniques presented in pattern form that can be used to generate
better prompts to successfully improve the outputs of LLM conversations, allow-
ing the model to able to focus on different keywords in different circumstances
and hence produces desired outputs. There are different approaches regards to
different patterns. The Persona Pattern conveys the idea that it’s easier for the
models to produce outputs from a certain point of view when telling them to
act as persona X. GenPerfectTrip used several prompt engineering techniques
to instruct the GPT model to give the optimal outputs during the trip plan
generation process, which include the Persona Pattern mentioned above.

4 Data and Data Processing

4.1 Data Collection

1. Collection of 20 sets of input trip preferences, each individual input may
contain information about destinations, trip duration, and the budget for
the trip. The testing data set ranges from very descriptive trip preferences
to very unclear and general preferences. The following are two of the
examples:

(a) Descriptive trip preference: I have a break for 3 days and wanting to
travel to Vancouver. I don’t mind spending money for a comfier and
more high-end hotel during my trip. Could you please help me come
up with a plan?

(b) Ambiguous trip preference: I want to go skiing for a week in Canada,
help me find a destination and hotels.

2. Human collection of hotel and attractions information based on the trip
preferences for comparison with the assistance of GPT Expedia plug-in.

4.2 Data Processing

1. Pre-web scraping processing involves with retrieving information from user
input to be used for web scraping.

2. Post-web scraping processing involves with taking the hotel information
from web scraping, selecting several top-rated hotels, and storing them in
a list to be used for plan generation. The hotel information contains hotel
name, price per night, location of the hotel.

3



5 Architecture and Software

The software comprises primarily two components: generating the prelimi-
nary plan, and improving the preliminary plan. The architectures of these two
components are outlined in the illustration section.

5.1 Architecture for Preliminary Plan Generator

The JSON prompt constructor’s purpose is to guide the GPT in convert-
ing user input into JSON format which contains “destination”, “price range”, “
number of nights” keys and correlative values. It constructs the system prompt
instructing GPT to extract information such as destination, trip duration, and
price range, from the user input (if available) and return a JSON. There are
some specific rules for constructing the JSON in this system prompt. This mod-
ule sends a request to GPT where the user prompt is the user input and the
system prompt refers to Appendix (13.1).

The data processor’s role is to utilize the information provided in JSON for
web scraping. It parses the JSON, extracts relevant information, and uses it to
form a URL that can access an available web page on BOOKING.com for search
results for hotels. Upon sending a request to this URL, the data processor re-
trieves the HTML content, which contains the details about the listed hotels.
It then parses HTML content to extract information such as name, location,
price, rating, and distance to the location. Ultimately, it outputs a list of hotels
information to the Preliminary Plan Prompt Constructor.

The preliminary plan prompt constructor creates a system prompt instruct-
ing the model in a two-step plan generation process. Firstly, it guides the model
to select hotels from the provided list, shaping the accommodation aspect of the
plan. Secondly, it directs the model to generate a detailed itinerary for each day
of the trip. This module sends a request to GPT where the user prompt is the
user input and the system prompt refers to Appendix (13.2).

5.2 Architecture for Improved Plan Generator

The improved plan generator shares a similar structure with the preliminary
plan generator but diverges in terms of logic and content flow.

The improved plan prompt constructor is responsible for generating a system
prompt that directs the GPT model to produce either a JSON or an improved
plan based on the user’s preference to modify hotels or activities. Please refer
to Appendix (13.3) for the example.

Unitizing the Persona pattern mentioned above, the prompt tells the model
to act as a trip planner so that it is facilitated to improve the plan from a trip
planner’s perspective. The prompt then directs the model to decide whether to
generate a JSON or improve the plan by replacing the current activities with
the activities the user is interested in. The preliminary plan is seamlessly inte-
grated into the system prompt, allowing the model to make any improvements

4



to the activities before returning the improved plan to the user.

If the GPT determines the user’s intention to improve the hotels, it con-
siders the user’s new requirements and generates a JSON using the same rule
as the JSON prompt constructor. In this scenario, the data processor executes
the same process as in the preliminary plan generator, producing a list of ho-
tels information. This list is then delivered to the hotel improvement prompt
constructor, which constructs a system prompt incorporating the provided ho-
tel list, the preliminary plan, and the instructions for the model to change the
hotels only. Please refer to Appendix (13.4) for the example.

6 Baseline Model and Comparison

1. To evaluate the performance of the system, a set of accuracy criteria was
created, and human evaluations were utilized to check for each individual
criterion. These criteria are used to evaluate both the preliminary and
improved plan.

(a) Destination accuracy: To verify the system did not randomly choose
a destination that is not related to the user input.

(b) Duration of Stay accuracy: To verify the system complied with the
user input.

(c) Price Range accuracy: To verify the system did not suggest a hotel
that is over budge or under budget. This one is a bit tricky, as some-
times the user preference can be objective, such as what does fancy
mean in terms of price per night. In this case, it is needed to compare
the selected hotel’s price with other hotels in that destination and
verify that it fits the user preferences.

2. For the improved plan, there is a strict requirement of only changing
things the user explicitly asked to modify. This is to make sure that
the improved plan is not just a newly generated plan, but rather based
on previous plan and an actual improvement over the preliminary plan.
This is done through comparing the detail in the two plans such as hotel
information and various activities.

3. Each generated preliminary plan is tested with attempts to change either
activities and hotel information. The following is the guild line used:

(a) For modifying hotel information, user input should only contain the
new preference for hotel. For example, ”I want to stay in cheaper
hotels”

(b) For modifying activities, user input should only contain the new pref-
erence for activities. For example, ”Instead of shopping, I want to
explore the city more”

4. To further evaluate the system’ generated plan, it is compared against the
GPT Expedia Plug-in with the same user preferences.

5



7 Quantitative Result 100

Results
Plans Destination

accuracy
Price accu-
racy

Duration ac-
curacy

Addition re-
quirement

Preliminary
Plan

100% 100% 100% N/A

Improved
Plan

100% 92% 100% 90%

8 Qualitative Result

Most of the inaccuracy in improved plan came from inputs that ask the sys-
tem to find cheaper hotels, if the preliminary plan already has cheap hotels, it
might fail to find cheaper hotel and generate a plan with more expansive hotels.
In the case of the additional requirement, the system struggles when the user
wants to modify the duration of stay where the generated output would modify
both activity and hotel.

8.1 Positive Example

Figure 3 shows an example output for a fancy 3 day trip to Vancouver.
This generated plan was able to convert descriptive words such as fancy into a
reasonable numerical value that represents the target price of the hotels. It also
selected the correct destination and generated an itinerary over 3 days.

Figure 3: Sample Output for the Preliminary Plan

6



Figure 4 shows an example that was considered as a positive output for the
improved plan. The user input for this particular sample was that the user
wants to stay in cheaper hotels. The system was able to keep the previous
itinerary and select cheaper hotels for the user to stay in.

Figure 4: Sample of Positive Output for the Improved plan

8.2 Negative Example

8.2.1 Failure in Fulfilling Addition Requirement

Figures 5 and 6 show an example that was considered as a negative sample
for the improved plan. In this example, it was asked to change the hotel infor-
mation, however in the improved plan, both hotels and activities were changed.

7



Figure 5: Preliminary plan

Figure 6: Improved plan

8.2.2 Failure in Price Assessment

Figures 7 and 8 show an example that was considered as a negative sample
for the improved plan in the price evaluation. In this example, it was asked to
find cheaper hotels, but the hotels in the improved plan were more expensive.

8



Figure 7: Preliminary plan

Figure 8: Improved plan

8.3 Comparison with GPT plug-in

Compared to the GPT plug-in, which only outputs either the hotel or activ-
ities, GenPerfectTrip is capable of considering the hotel location and suggesting
activities along with the selected hotels.

9



Figure 9: System Generated Plan

Figure 10: GPT plug-in Generated Plan

9 Discussion and Learning

GenPerfectTrip demonstrated notable success in generating comprehensive
and personalized trip plans for users, encompassing hotel selections and detailed
trip itineraries, which perfectly align with their requirements and preferences

10



such as the destination, trip duration, budget constraints, and specific attrac-
tions of interest. One notable aspect is the application’s ability to seamlessly
combine both hotel selection and itinerary planning in a single solution, which
set GenPerfectTrip apart, especially in comparison to the existing Expedia’s plu-
gin. Through the development of GenPerfectTrip, the most significant learning
was the critical role of prompt engineering and the boundless possibilities that
GPT offers. When starting a similar project in the future, the development
team would build it on the top of this project and utilize prompt engineering
and GPT to implement more detailed trip arrangements such as hotel booking,
ticket purchasing, UBER requests, and restaurant reservations that come with
the plan generated, enabling users to have all aspects of their trip meticulously
prepared with just a single tap.

10 Individual Contribution

Junhong Chen is responsible for:

• constructing the system prompt for generating the preliminary plan.

• setting up the Django framework

• back-end logic and API integration

• the dynamic web scraping by utilizing the Beautiful Soup library, which
included JSON parsing, URL construction, HTML parsing, and data ex-
traction.

• the responsive front-end web interface.

• integrating JQuery into Django to handle front-end side logic and dynamic
content updates.

Yiwei He is Responsible for:

• collection of the testing data set.

• constructing the system prompt for converting user inputs into JSON, and
the two system prompts for plan improvement.

• testing and debugging the generation of preliminary and improved plan

• implementing the evaluation metrics

• designing the architecture and general workflow

• evaluation of system performance

11 Reference

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., ... &
Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering
with chatgpt. arXiv preprint arXiv:2302.11382. https://arxiv.org/abs/2302.11382

11



12 Permission

• permission to post video: wait till see video.

• permission to post final report: YES.

• permission to post source code: YES.

13 Appendix

13.1 Prompt for JSON prompt constructor

You are a trip planner that will help the users to come up with a trip plan.
The user would give you ideas about their trip preference, you should extract
information about destination, number of nights and price range and output
ONLY a json type. Price range should be in numerical value for hotels to stay
per night. This value should be related to the budget and number of nights. If
one of the three information is not given, please give a value based on other
information. For example, if the user doesn’t know how long the trip will be,
you should determine based on the destination and price range. Price range =
budget/number of nights. The output destination should be a city to visit. All
value must not be null. Price range should take form like 100-200

13.2 Prompt for preliminary plan prompt constructor

Your job is to help the users generate a plan for their trip based on their
requirements and hotel information.
This list stores the information for 10 hotels that the user can choose, and you
need to do the following things:
step 1, help the user choose hotels the user should stay in and provide detailed in-
formation about the hotels. You can choose different hotels based on the itinerary
every day.
step 2, generate a trip plan for the user. Recommend where they should go and
what they should do. Don’t ask anything just generate the entire trip plan for
the user.
list:{hotel info}

13.3 Prompt for improved plan prompt constructor

You are a trip planner that will take the provided plan and try to improve
the plan according to the user’s requirement. You should only change details
based on user’s requirement. If the user wants to improve on the activities, do
not change anything about hotel, if the user wants to make change to the hotel
information, output ONLY a json file based the new requirement in the form of
destination, number of nights and prince range.Price range should be in numer-
ical value for hotels to stay per night. Price range should take form like 100-200.
When forming the output, you must take in account of the original plan. For
example, if original hotel price is 500 and user wants cheaper hotel, it must be
lower than 500.
Provided Plan:{original plan}

12



13.4 Prompt for hotel improvement prompt constructor

You are a trip planner that will take the provided plan and try to improve
the plan according to the hotel list and user input. You should not change the
activities and only change the hotels to stay.
Provided Plan:{original plan}
hotels list:{hotel info}

13


