

So, the binary prediction for this method is the answer, yes or no, to the question “do
these two input belong together or not?”

Given two input words WordA and WordB, expressed as word embeddings of size d,
predict 1 if yes, they do belong together, and 0 if the answer is no, they do not.

WordA’s embedding is (a0, a1, a2, … ad), Word B is (b0, b1, b2, … bd)

In a similar way to the skip-gram method, which essentially compares a given input wordA
to every possible wordB in the vocabulary, through a dot product, we just use one dot
product here to compute the similarity between wordA and WordB. It is interesting,
again, to note that this operation is the same as the basic linear neuron operation. So the
NN becomes:

We convert Out to a “probability” (P) using the sigmoid function (really just force it to be
a number between 0 and 1):

This probability is turned into the neural network training loss function using binary cross
entropy, i.e.

2 9
r

fFout

WodBWordA.WordB

EIaixbEQti.e
P OF outs

f label L retted loss log P

f label o ceded loss log CI p ÉÉÉÉÉÉf
a logarithm

really pushes
hard againstwrong
answer

———
The full skip gram with negative sampling method has some nuances discussed in the
assignment.

When randomly sampling words for the negative examples and the positive examples, avoid
the high-frequency words (such as “the”, “and” …) as they appear near many words, and so
don’t add much information. Reducing their appearance in the labeled dataset makes
training more efficient.

Other notes about Assignment 1, Section 4, on Skip Gram with Negative Sampling:

Because this method is more efficient, we can train larger sized vectors than Section 3,
use a much larger vocabulary, and train from a much larger corpus (the provided
LargeCorpus.txt).

In Section 3 we just used ‘lemmatization’ as mentioned above as the ‘tokenization’ method.
Tokenization is the process of converting input words into known, specific inputs. The
tokenization process given to you in Section 4 is a little more complex, mainly just
removing punctuation as well as lemmatizing.

Since you’re asked to use a dimension size of 8 for the embeddings in Section 4, to
visualize these, you need to reduce the dimensionality down to 2. Dimensionality
reduction would have been covered in a previous course, but the code for doing so is done
with principle component analysis (one of several ways to do this), and the code is given to
you to do this. This allows you to visualize the embeddings with the same 2-D plot as used
in Section 3 of the assignment.

2 10

