ECG 1786 Lecture *2
Last Day: Word Embetdirs Properties: Meas my Extraction.

Woik-in-Flight: - Assignment 1 due next wot.

- Fill out survey if have not - new registrants

Today: How Word Embeddings are Created. nisans alder.

Recall: - Word embedding represent meaning of.
\sim words in numbers.

- helps reval networks dea with ambiguity in layup
- embeddings that are close; near that the associated words are clare in meonity
- also other associations Queen - King = Uonar-Mas
\rightarrow You should have done Assign 1 pat's $1 \div 2$ now.
size
- last week we discossel la little) haw bis dimension
should be; diminishing retvins beyond 306 according to Globe papa by Pennington.

How to create (train) vectors?

- a clever + complex idea that begins witt Bersio \rightarrow Mikolon.

Bis picture of method: We train a neural networt to make a prediction based on the meaning of a word. Inside the neural network that meaning ot will be encoded = the worn The of enbrtity The training of the network will cause the encoding to be learned.
That encoding is the embedding/ vector.
Capologies for now using 3 terms that are the same thing: encoding (embeldinglvector,) \rightarrow relates to auto-encodels
So, what is that prediction, task and where does the data come from? Where do the labor cane from?
*The Prediction Task: Given word A "belong" with
 Considering these three sentences:

1. The mathematician san to the store.
2. The engineer can to the store.
3. The mathematician solved the problem. which "s

Sentences 1 :̀ 2 imply similarity between engineer i mathematician.
\Rightarrow not surprising that this is a sensible sentence
4. "The engineer solved the problem"
－this is an example of the Distributional Hypothesis＂：＂ ＂Words appearing in similar contexts are related＂
－since we want to predict which words are appear near we have a ready made dataset of examples and labels：every sentence ever written！ －an enormous dataset！yippee！！
－let＇s consider some simple sentences taken from the SimpleCorpus．txt in Assignment 1．In this course
－looks like this：I hold a dog．She holds a dog．He holds a dog．I rub the dog．She rubs the cat．．．
－these simple sentences give some clues to the meaning of the wools used，and which are related \rightarrow what are the ？
－we can generate training examples of words that are by selecting words that are ＇near＇each other in＇correct＇（void）written sentences．
－neal \triangleq within a few words（on either side）of target
－for example，consider＂I hold a dog＂；＂if we tate ＇near＇to be words 土非2－words away y，fome＇then the training examples of pairstated moils are
 －context word．car mote a lad of these．

1-hot 4 ward voobbobly , hello goodbye begin end

$$
\text { hello }=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { goody }=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { begin }=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \text { end }=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- want to build a NN predictor that given a word pair (word, word B) cans
predict word B given word A:

$$
\text { "SN. } \rightarrow \text { void B. }
$$

\therefore assume that hond s can only come form a specific imiles Vocabulary \rightarrow define.

- a key part of this is how the input is represented; what is the simplest way to represent all
the words in a vocabulary of size
- discuss $1-h$ d
Thorn A is that encoded.
- we know that we want to represent the words by a vector of size \ll vocabulary size (that's whit $1^{\text {st }}$ lecture was obad)
- Let's consider a simple example similar to Assignment 1, part 3 ,
- let's say the |vocabulary size| $V=10 \quad \begin{gathered}10 \text { mod } \\ \text { viand } \\ \text { val and }\end{gathered}$

- let's assume the embedding size has dim $=4$ (verb, encoltay)
- So that implies we've jot 10 embeddiess of Size 4 each;
- these are typically stored in a matrix lite so

$\rightarrow \operatorname{dim} x|V|$ "embedding matrix".
- these will represent ward A.
- Key: these values will be randomly milialized and leaned through trainh sot like weight's \& biases (can pose this so the those que exactly weights, bit didety
- So the input to the NN will bee these 4 values $\left(e_{0} \rightarrow e_{3}\right)$ associdet with word A in the embedding native - but what should the output be?
 hood ${ }^{\prime}$
- cant Force it to be
sp cube
- probsbildo
- where i is the word number of word t (chic 'tuget'woud) here is the 10
- what the IVI-nevian nevial network that will do the prediction task no non-them. fume. word t

recall

$$
\text { out o }=\sum_{j=0}^{\geq} w_{j}^{i} e_{j}^{l}+b_{0}
$$

\rightarrow torch. An. linear.
bards

- So to train this network, you would present many examples, of (luoldt, words) pairs.
\rightarrow word is the e^{i}; target
\rightarrow words lith the label, is 1 -hot encoded in a vector of size $|V|=10$.
\rightarrow use "cross entropy," loss to tai. \rightarrow discuss.
(the -log of correct answer)
- Crucial, to repeat: the values of e^{i} are also leaned through gradient descent.
note PTotoch carbine Soft mes + crooss-entrofy ind 1 Cu-ctor
for numerical stabiles
- Nuarcelimpiovenent: observe the w_{j}^{i}
- these are different word embeddings for each word.
\Rightarrow we dort really need 2 embeddings, so can save computation (\ddagger \& parameters) b) just using 1
\Rightarrow ie con replace w_{j}^{i} with e_{j}^{i} Lithe sane parameter appears in 2 places in the networks.
\rightarrow a different way to think about thus:
\rightarrow to perform the prediction task, "do these two words relate?", just compute
the dot product of their word vectors \rightarrow the higher it is, the more similar the, an \rightarrow just like a convolution Kernel.

Assignment 1, Section 3 asks you to train this prediction task lembedding erection
(1) Using a vocabulary of size 11:

Is she, he, cub, hold, dog, cat, and, the, a
(2) On a small corpus (smollsinplecorpes. Att)
(3) with an embedding size 2
\Rightarrow wind you to see if similar words end up 'near' each other on a 2-0 plot

- An important detail: words in the corpus are first reduced to their "root" in a process called lemmatization:

$$
\begin{aligned}
\text { ers. holds } & \rightarrow \text { hold - so we only make erbellisy } \\
\text { rubs } & \rightarrow \text { rub fol the root } \\
\text { rub } & \rightarrow \text { rub. }
\end{aligned}
$$

- Section 3 will help you get bact to familiarity with soffuco for training a nevial net; youll be training the neural network "Fran scratch" (ie nat pre-traired)

$$
p^{\left(\text {culled } \sin , G_{0.1}\right)}
$$

Next: This method of training embeldirgs is slow in genera because there are many anat's to compte \rightarrow equal to the size of the vocabulary; faster method caller Skip Gran with Negative Sampling
-also is Assignment 1 Section \uparrow :
SKip-Gram with Negative Sampling.

- rather than predict which of the $|V|^{\sim} \ggg h_{i} \rightarrow$ is is ens. words in the vocabulary are associated fretoteh to the target word, (a multi-class classification)
- instead, we make a binary prediction as to whether a given pain of words (targetward, context word as ed or not
\rightarrow to do so, we need positive examples of related worth - exactly the sem as turnip GRAM, meth above, but also need negative examples of horrid pairs that ane not related. ito properly tram a binary classifies)
 (with a given) window size, ot)
\rightarrow to create the negdive samples, for each tasset nod, we raidomltomitararple word e wards from the entire Corpus $\xrightarrow{\rightarrow}$ city is therditis or? [ie wont some positive examples be included?]
\rightarrow this sampler giver the method its name: Skip-gran couth negative sampling.
- described in Juratski, tat, Section 6. 8.
- How many negative samples.'
- often $2 x$ as many negative than positive.

So, the binary prediction for this method is the answer, yes or no, to the question "do these two input belong together or not?"

Given two input words Word A and Word, expressed as word embeddings of size d, predict 1 if yes, they do belong together, and 0 if the answer is no, they do not.

Word's embedding is ($a 0, a 1, a 2, \ldots a d$), Word B is ($b 0, b 1, b 2, \ldots b d$)
In a similar way to the skip-gram method, which essentially compares a given input word A to every possible word in the vocabulary, through a dot product, we just use one dot product here to compute the similarity between word A and Word. It is interesting, again, to note that this operation is the same as the basic linear neuron operation. So the NN becomes:

We convert Out to a "probability" (P) using the sigmoid function (really just force it to be a number between 0 and 1):

$$
\text { ie. } P=\sigma(\text { out })
$$

This probability is turned into the neural network training loss function using binary cross entropy, ie.

$$
\begin{aligned}
& \text { a logarithm? } \\
& \begin{array}{l}
\rightarrow \text { really } \frac{\text { wishes }}{\text { hard against cons }} \\
\frac{\text { answer }}{}
\end{array}
\end{aligned}
$$

The full skip gram with negative sampling method has some nuances discussed in the assignment.

When randomly sampling words for the negative examples and the positive examples, avoid the high-frequency words (such as "the", "and" ...) as they appear near many words, and so don't add much information. Reducing their appearance in the labeled dataset makes training more efficient.

Other notes about Assignment 1, Section 4, on Skip Gram with Negative Sampling:
Because this method is more efficient, we can train larger sized vectors than Section 3, use a much larger vocabulary, and train from a much larger corpus (the provided LargeCorpus.txt).

In Section 3 we just used 'lemmatization' as mentioned above as the 'tokenization' method. Tokenization is the process of converting input words into known, specific inputs. The tokenization process given to you in Section 4 is a little more complex, mainly just removing punctuation as well as lemmatizing.

Since you're asked to use a dimension size of 8 for the embeddings in Section 4, to visualize these, you need to reduce the dimensionality down to 2. Dimensionality reduction would have been covered in a previous course, but the code for doing so is done with principle component analysis (one of several ways to do this), and the code is given to you to do this. This allows you to visualize the embeddings with the same 2-D plot as used in Section 3 of the assignment.

