ECE 1786 Lecture \#5

Work-in-Flight: Assignment 3 - Training \& Using Transformer, due Mon Oct 23

- Assignment 2 Due Today at 9pm

Team forming due today - form https://forms.office.com/r/jxOKmWDTed
Last Day: Intro to Language Models \& Transformers; Project Structure/Scope - suggest waiting until after seeing A3 (\&A4) to choose topic

Today: The Core Mechanisms of Transformers \& Assignment 3
Recall: When training a Transformer from scratch we train it to be a language model: given a sequence of n words, predict the probability that each word in the vocabulary is the next $(n+1) s t$ word.
Using sentences that have been written and are coherent/relevant/grammatical: e. 9 "The smooth blue lake became choppy in the wind" gives rise to training examples:

Training Example 4: The smooth blue \qquad
Training Example 5: The smooth blue lake \qquad
Training Example 6: The smooth blue lake became \qquad

- Lots of training data! Everything ever written!
- Here is the global structure of a transformer, reprised:

- Even though n tokens always go in, may use fewer than n, as in above example.
- Important: in a single inference the final MLP just takes in dinputs (not $n \times d$) Which d inputs? The d inputs corresponding to the last input token (Which could be $n-1$, or $n-2, n-3$, however long the actual input is)

Now, here is what is in each transformer block Ti:

- Recall it has the same number of numbers in and out

$5-2$

Here is the structure of one such Transformer Block:

Multi-Head Self Attention:

The intuition of the Transformer self-attention block is said to be doing:
The input word embeddings are transformed from their initial, very general meanings (across all uses/contexts of the words) to something more specific to the context - i.e. the other words in the sequence
e.g. the embedding for "bank" would become different in these contexts:

- She sat on the river bank ...
- He emptied his bank account ...
- They should not bank on the result ...
- From * in above picture consider how to compute the outputs Xi from the inputs Xi (ignoring skip connections for now)
e.g. $\mathrm{X0} \quad \mathrm{X}_{1} \quad \mathrm{X}_{2} \times 3 \times 4$ He emptied his bank account
- Self attention asks the question: how similar is each word to all the preceding words and itself? [See Jurafsky Section 9.8 and 10.1]
e.g. how similar is X 3 (bank) to $\mathrm{XO}(\mathrm{He}$)?
how similar is X 3 (bank) to X 1 (emptied)?
how similar is X 3 (bank) to X 2 (his)?
- how similar is X3 (bank) to X3(bank)?

How have we computed a single number that says how similar/related two words are?
=> use the dot product of the word embeddings - bigger means more similar
ie. compute: $\quad X_{3} \cdots X_{0}$

$$
\begin{aligned}
& X_{3} \cdot X_{1} \\
& X_{3} \cdot X_{2} \\
& X_{3} \cdot X_{3}
\end{aligned}
$$

Define $\operatorname{score}\left(X_{i}, X_{j}\right)=X_{i} \cdot X_{j}$
We will need to normalize across these scores when use it to compute combination:

So define

$$
\alpha_{i j}=\operatorname{softmax}\left(\operatorname{score}\left(x_{i}, x_{j}\right)\right) \forall j \leq i
$$

ie.

$$
5-4
$$

$$
\alpha_{i j}=\frac{\exp \left(\operatorname{score}\left(x_{i}, x_{j}\right)\right)}{\sum_{k=0}^{i} \exp \left(\operatorname{scae}\left(x_{i}, x_{k}\right)\right)} \forall j \underset{\substack{\uparrow \\ \text { only plecias }}}{\leq i}
$$

This score, $\mathcal{L}_{i} j_{j}$ gives the relative importance of X_{j} to X_{i}, and we $\frac{\text { current }}{\text { world. }}$ use it to compute a new embedding, Y_{i} that combines different proportions of the X_{j}, like so:

$$
y_{i}=\sum_{j \leq i} \alpha_{i j}{ }^{* * *}
$$

- So, we are adding a fraction of the meaning of those other words into the original embedding; the fraction depends on how similar the words are.
- This is how "bank" gets more "river" into it
- The literature refers to these as 'contextual embeddings', as does the Jurafsky tex \dagger
- Compute the Y_{i} from $\mathrm{i}=0$ up to $\mathrm{n}-1$ (if all occupied with embeddings)

Notice that Yi_{i} is only allowed to be a function of the input words that came before it, in what is called a 'causal' model

Now, notice that there are no learned parameters so far. Gotta have those!
(I.e. the weights/biases/parameters of the model)

Will use an ML 'trick' to insert learning, as follows:
Notice that the Xi get used in three ways:

1. as the focus $X i$ in score $(X i, X j)$ - well refer to this as the "query" (perhaps the word that is asking "who am I really in this context?")
2. As the 'searched' Xj_{j} in score $\left(\mathrm{Xi}_{\mathrm{i}}, \mathrm{Xj}_{\mathrm{j}}\right)$ - call this the "key"
3. To compute the Y_{i} in ** above - weill call this the "value"

- In all three cases we will transform the input Xi by multiplying it times (three different) matrices consisting of learned parameters.
- The matrices will be a size that leaves the size of the output the same as the $X i$ input, hence just transformed.
- e.g. for the query, call it q and compute:

$$
\quad q_{i}=W^{Q} X_{i} \quad \text { where } W^{Q}=\left[\begin{array}{cccc}
w_{00} & \cdots & w_{0, d-1} \\
\vdots & & \vdots \\
\omega_{d-1,0} & \cdots & \omega_{d-1}, d-1
\end{array}\right]\left[\begin{array}{l}
x_{0}^{0} \\
\\
\text { Think of } W Q \text { as a bit like a } C N N \text { kernel }
\end{array}\right]
$$

- If you multiply this out you'll see that qi has the same size as Xi
- but it has been projected/transformed by WQ
- The elements of W are learned parameters, learned through gradient descent
- Similarly there are two other learned W matrices, for the key and the value:

$$
\begin{aligned}
& k_{i}=W^{K} X_{i} \\
& v_{i}=W^{V} X_{i}
\end{aligned}
$$

- Together, qi, ki and vi "look" for patterns in the input and express the output based on these, like a CNN kernel
- So the overall computation becomes:

$$
5-6
$$

For each input embedding, $X i$, compute:

$$
\begin{aligned}
& \alpha_{i j}=\operatorname{softmax}\left(\operatorname{score}\left(x_{i}, x_{j}\right)\right) \quad \forall j \leq i \\
&=\operatorname{softmax}\left(\frac{q_{i} \cdot k_{j}}{\sqrt{d}}\right) \quad \forall j \leq i \\
& y_{i}=\sum_{j \leq i} \alpha_{i j}\left(v_{j}\right) \text { scaled to keep sizes } \\
& L_{\text {the output em edging colcespording ty } x_{i}}
\end{aligned}
$$

- Note that the same learned W^{Q}, W^{K}, and W^{V} matrices are applied across every input $X i$ "row" in the transformer
- I find it difficult to have strong intuition on what these W are learning; even so it is thought that there are different sets of things to learn, just like there are different kernels learned and use successfully in CNNs
- So, that brings us to "Multi-Head Self-Attention"
- There are several versions ('heads') of these weights so get:

$$
W_{i}^{Q}, W_{i}^{K}, \text { and } W_{i}^{V} \quad 1 \leqq i \leqq h
$$

where h is the number of heads.

- To keep the number of parameters reasonable, some versions of the transformer make each head produce only a part of the output embedding size by dividing d / h and producing that many numbers in the embedding.
- Can also use different sizes for the heads of the transformers, and reduce it back to the desired size (d) by using a learned transformation matrix called

$$
W^{O} \quad\left(h d_{v} \times d\right)
$$

Now, return to the specific Transformer block above:

- The other parts of the above transformer block are more common

1. Skip connections (red lines) - are an insurance policy against failed optimization - essentially 'skips' the block if nothing useful happening, but keeps the information passing through the block
2. Layer Normalization, Dropout and Weight Decay also used

- Very important: the computation in between the dashed lines are all independent! Y_{i} is a function of some or all of the X_{i}, but can all be done in parallel! This speed-up was crucial to the ability to train against huge amounts of training data - trillions of tokens.
- Also, the Feed-forward MLPs are isolated - ie. there are n separated MLPs, not one big one, and their parameters are all the same
- Think of the transform block as a set independently computed "rows", where there is one "row" per input token/embedding.

Each "row" has the same trained parameters in it, including the layer norm Similar to a CNN's kernels - like how the kernel is used all over the image, \dagger attention, MLP, norm are applied the same on different input token rows

- Now, I mentioned that attention is "said" to be working as described, but to me this only really makes sense on the very first transformer block TO, and even there, just a the beginning attention
- Everything after that is the typical black-box of neural networks - the feed forward MLP for example
- THEN, the next transformer block mixes up all the input embeddings again, through a different set of learned Matrices on that layer, then MLP and so on through all layers.
- To me the key to the transformer is really how wide it is - it keeps the information flowing from the input embeddings flowing all the way to the end, versus RNNs which "pinched" that information after every word input

Notes on Assignment 3

- Code for Transformer is too complex to write from scratch
- So, A3 gives you Karpathy's mingpt - a well written, simpler GPT style transformer
- You'll have to read code and try to understand it
- we will use mingpt "nano" which has these parameters:
- \# Transformer blocks = 3 = n_layer
- \# Heads, h=3 = n_head
- Embedding dimension, $d=48=n _e m b e d$
- The assignment is to train this transformer on a small, then large corpus (same as ones from A1)
- Re-use the language model as a sentiment classifier, after fine-tuning it
- Learn to use the Huggingface model hub/code to fine-tune GPT-2
- Missing from this lecture: Positional Embeddings - the answer to the question "how does the transformer know the order of the input words?"

