AN
ECE 1786 Lecture #5
Work-in-Flight: Assignment 3 - Training & Using Transformer, due Mon Oct 23
> Assignment 2 Due Today at 9pm
> Team forming due today - form https://forms.office.com/r/jxOKmWDTed

Last Day: Intro to Language Models & Transformers; Project Structure/Scope
o suggest waiting until after seeing A3 (&A4) to choose topic
Today: The Core Mechanisms of Transformers & Assignment 3

Recall: When training a Transformer from scratch we train it to be a language
model: given a sequence of n words, predict the probability that each word in
the vocabulary is the next (n+1)st word.

Using sentences that have been written and are coherent/relevant/grammatical:
e.g "The smooth blue lake became choppy in the wind" gives rise to training
examples:

Training Example 4: The smooth blue
Training Example 5: The smooth blue lake
Training Example 6: The smooth blue lake became

* Lots of training datal Everything ever written!
* Here is the global structure of a transformer, reprised:

Probabilities
Across
Input Embedding Vocabulary
Sequence

P(W)

— P(Wo) M= Sia of
1

PW,) Vocdoddar,

The X,

Quick X
1

Brown X,

. : d
x' ! £ \
Gow Tt P(Wy1)
Transformer Blocks Language Model

Head

+ Even though n tokens always go in, may use fewer than n, as in above example.
+ Important: in a single inference the final MLP just takes in d inputs (not n x d)
o Which d inputs? The d inputs corresponding to the last input token
> (Which could be n-1, or n-2, n-3, however long the actual input is)

Now, here is what is in each transformer block Ti: X - -2
. . X 2

- Recall it has the same number of numbers in and out L
)(M d d 2/)—1

Here is the structure of one such Transformer Block:

lezie 0n
Skip @ Skip } e }

Connections

Connections

Multi-Head Layer Feed Layer
Self Attention Norm Forward Norm Ned.
(\ X‘M BLocI< f\‘(d A MLPs }/‘K/{
A% veloes

Multi-Head Self Attention:

The intuition of the Transformer self-attention block is said to be doing:
> The input word embeddings are transformed from their initial, very general
meanings (across all uses/contexts of the words) to something more
specific to the context - i.e. the other words in the sequence

- e.g. the embedding for "bank" would become different in these contexts:
> She sat on the river bank ...
> He emptied his bank account ...
> They should not bank on the result ...

S-3

* From * in above picture consider how to compute the outputs Yi from the
inputs Xi (ignoring skip connections for now)

eg. X0 X1 X2 X4
He emptied his bank|account

+ Self attention asks the question: how similar is each word to all the preceding
words and itself? [See Jurafsky Section 9.8 and 10.1]

e.g. how similar is X3 (bank) to XO(He)?
> how similar is X3 (bank) to X1(emptied)?
o how similar is X3 (bank) to X2(his)?
o how similar is X3 (bank) to X3(bank)?

How have we computed a single number that says how similar/related two words
are?
=> use the dot product of the word embeddings - bigger means more similar

ie.compute: X3 --X
X3+ X1

X3+ Xo
X3 X3

Define SCO?“@(X@, Xj) = X;- Xj

We will need to normalize across these scores when use it to compute
combination:

Sodefine qy;; = softmax(score (xi,x;))Vj <1

S
exp (score (xj, x;))

Qjj = — Vi <1
Sio exp (scae (z;,21)) 1
r only Precviog
¢ curent
This score, CCC - gives the relative importance of Xj to Xi, and we W
use it to compu‘re‘a new embedding, Yi that combines different proportions of

the X}, like so:
Yi = Z O‘ij@

J<t

* So, we are adding a fraction of the meaning of those other words into the
original embedding; the fraction depends on how similar the words are.

* This is how "bank" gets more “river” into it

* The literature refers to these as 'contextual embeddings’, as does the
Jurafsky text

*+ Compute the Yi from i = O up to n-1 (if all occupied with embeddings)
> Notice that Yi is only allowed to be a function of the input words that came
before it, in what is callled a 'causal’' model

Now, notice that there are no learned parameters so far. Gotta have thosel
(T.e. the weights/biases/parameters of the model)
o Will use an ML 'trick’ to insert learning, as follows:

Notice that the Xi get used in three ways:

1. as the focus Xi in score(Xi, Xj) - we'll refer to this as the "query” (perhaps
the word that is asking "who am I really in this context?")

2. As the 'searched’ Xj in score(Xi Xj) - call this the “"key"

3. To compute the Yiin ** above - we'll call this the “value”

* Inall three cases we will fransform the input Xi by multiplying it times (three
different) matrices consisting of learned parameters.

55

* The matrices will be a size that leaves the size of the output the same as the
Xi input, hence just transformed.

+ e.g. for the query, call it g and compute: iﬂ
R 7
o 4 o
g = WX, Lhere W od~ [X
- Think of WQ as a bit like a CNN kernel Wieyo o Wiy | [a0

o If you multiply this out you'll see that gi has the same size as Xi
> but it has been projected/transformed by WQ
> The elements of W are learned parameters, learned through gradient
descent

+ Similarly there are two other learned W matrices, for the key and the value:

ki =W"X;

V; = WVXZ'

+ Together, qi, ki and vi "look" for patterns in the input and express the output
based on these, like a CNN kernel

* So the overall computation becomes:

For each input embedding, Xi, compute:

aij = softmax(score (zi,x;)) Vi <i

= saftmax(q\/aj) Vi <14
QB’ gSC’ﬁ/CdJ ﬁ) /(feﬁ Sizeg U/b/C’/ cotro!

:ZO@]‘@/’) /LA() \/o/t/?.

J=t
4 {he 2 fpt Em el}p(fa 0//@{%{/ X5

- Note that the same learned W W" and W matrices are applied across
every input Xi "row" in the tfransformer

+ I find it difficult to have strong intuition on what these W are learning; even
so it is thought that there are different sets of things to learn, just like
there are different kernels learned and use successfully in CNNs

* So, that brings us to "Multi-Head Self-Attention”
> There are several versions (‘heads’) of these weights so get:

We WK and WY 1Zi<h
where h is the number of heads.
* To keep the number of parameters reasonable, some versions of the

transformer make each head produce only a part of the output embedding size
by dividing d/h and producing that many numbers in the embedding.

S/

+ Can also use different sizes for the heads of the transformers, and reduce it
back to the desired size (d) by using a learned transformation matrix called

W (hd, x d)

Now, return to the specific Transformer block above:

Skip Skip
Connections Connections

Multi-Head Layer Feed Layer
Self Attention Norm Forward Norm N /()
N nd MLPS A

* The other parts of the above transformer block are more common

1. Skip connections (red lines) - are an insurance policy against failed
optimization - essentially 'skips’ the block if nothing useful happening, but
keeps the information passing through the block

2. Layer Normalization, Dropout and Weight Decay also used

* Very important: the computation in between the dashed lines are all
independent! Yi is a function of some or all of the Xi, but can all be done in
paralllell This speed-up was crucial to the ability to train against huge
amounts of fraining data - trillions of tokens.

* Also, the Feed-forward MLPs are isolated - i.e. there are n separated MLPs,
not one big one, and their parameters are all the same

* Think of the transform block as a set independently computed "rows”, whe%ag
there is one "row" per input token/embedding.
> Each "row" has the same trained parameters in it, including the layer norm
> Similar fo a CNN's kernels - like how the kernel is used all over the image, t
attention, MLP, norm are applied the same on different input token rows

* Now, I mentioned that attention is "said" to be working as described, but to
me this only really makes sense on the very first transformer block TO, and
even there, just a the beginning attention

+ Everything after that is the typical black-box of neural networks - the feed
forward MLP for example

+ THEN, the next transformer block mixes up all the input embeddings again,
through a different set of learned Matrices on that layer, then MLP and so on
through all layers.

+ To me the key to the transformer is really how wide it is - it keeps the
information flowing from the input embeddings flowing all the way to the end,
versus RNNs which "pinched” that information after every word input

Notes on Assignment 3
* Code for Transformer is too complex to write from scratch
+ So, A3 gives you Karpathy's mingpt - a well written, simpler GPT style
transformer
* You'll have to read code and try to understand it
+ we will use mingpt "nano” which has these parameters:
o # Transformer blocks = 3 = n_layer
o # Heads, h = 3 = n_head
- Embedding dimension, d = 48 = n_embed

* The assignment is to frain this fransformer on a small, then large corpus
(same as ones from Al)

* Re-use the language model as a sentiment classifier, after fine-tuning it

+ Learn to use the Huggingface model hub/code to fine-tune GPT-2

* Missing from this lecture: Positional Embeddings - the answer to the question
"how does the transformer know the order of the input words?”

