
         
        ECE 1786 Lecture #6 
Work-in-Flight: Assignment 3 - Training & Using Transformer, due Mon Oct 23 

Team forming should be done? ◦
Project approval-in-principle - see project document for link to form ◦

Last Day: Core Mechanisms of Transformers & Assignment 3 
Note Formal Definitions paper posted with Lecture 5 - mathematical ◦
description 

 
Today: 1. Language Generation using Transformers 
  2.  Project Ideation and Proposal 
 

Language Generation Using Transformers 
 
Recall: A language model is trained to predict the next word that comes after an 
input sequence of words. 
 
So, if you can do that, then you can predict a whole sequence of output words, 
one at a time, by taking each predicted word, appending it to the input sequence 
of words & then predicting/generating the next word after that, and so on. 
 
        This is called “Auto-regressive” generation, a term that comes from the 
world of sequence predictions. (Not an obvious name..) See Jurafsky section 10.2 
 
Here is the what I’d call the “Auto-regressive loop:” (maybe obvious, but is very 
important): 
 
e.g.  If the input started as:  “The clean river flowed” 
Call model to infer & generate next word:  “into” 
 
Then, the next input to the model is “The clean river flowed into” 
Next word might be: “the” 
 
Next input would be “The clean river flowed into the” 
Generate next word, and so on.  This is how chatGPT delivers what you ask for. 
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Each word is pretty expensive, in that it is a full inference run just to get one 
word, of a very large model.   
 

Example Generation from GPT-2  
 
See: https://huggingface.co/spaces/docs-demos/gpt2 (4 versions S, M, L, XL)  
  
1. From GPT-2 medium (mid-sized GPT-2 in terms of # parameters).  
  
Input: The clean river flowed  
Generation Parameters (Unknown: i.e. Temp, Top-P, etc., max tokens generated)  
  
Output:  The clean river flowed in steady but strong currents.  
  
After a week of hard-boiled fish hunt, all was tranquil again. They went out in a 
group on the small river and ate their dinner along the banks with some of the 
fish  
  
2. From GPT-2 XL (largest GPT-2).  
  
Input: The clean river flowed  
  
Generation Parameters (Unknown)  
  
Output: The clean river flowed. We walked on to the other side with the people 
we left behind. We found a small restaurant with a bench near the river — a 
small oasis at the end of the world, really.  
  
In the evening we  
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Recall the specific input & output of the language model/transformer: given an 
input sequence of word embeddings, X0, X1,… Xn-1, output the probability of 
every word in the vocabulary being the next word: 
 
 
 
 
 
 
 
 
 
 
 
So, for a given input sequence, which word is selected as the output? 
 
The process of selecting the word, based on the output probabilities, is called 
decoding.  This word is an unfortunate choice, as it is confused with decoders 
that are quite something else in this field.  (So make sure you pronounce the 
“ing” on decoding).  We speak of the ‘decoding’ algorithm, i.e. given P(Wi), select 
one of the Wi as the output. 
 
What do you think the best approach/decoding algorithm is? 
 
This needs some careful thought.  We don’t just want the best next word, but 
the best sequence of output words.  That does depend on the next word, but 
also what might be able to come after. 
 
What makes the sequence best?  I.e. what are its properties?  
The full input/output sequence should be: 

Grammatical ◦
Make sense given the input context ◦
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Method 1: Greedy Decoding.  Just select the highest probability word. 

You will see this in Assignment 3 Section 2 ◦
Greedy does not work well in general - it picks obvious words, but these ◦
often lead to boring, uninteresting sequences of words;  also repetitive 
Greedy may choose the most likely next word, but does not result in the ◦
most likely sequence of generated words 
Gets stuck in a highly local optimum in the space of all possible generated ◦
sequences 

 
We can express this issue mathematically as follows:  Given an input sequence of 
embeddings/words/tokens X0 … Xn-1 we want the generated sequence of output 
words Y0 … Yg-1 of g words to be the most likely sequence 
 
i.e. we want P(Y0) x P(Y1) x …. x P(Yg-1) to be maximized.   
 
But, we don’t know P(Y1) when selecting Y0 (or Yj,  j>i when selecting Yi) 
 
This is a hard problem because there are M**g possible sequences of g output 
words, which is a big exponential.  Here M is the size of the vocabulary 

If M = 50000, g=20, 50000**20 is huge. ◦
Worse, each one of those is a full forward inference of the model! ◦

 
As shown in Jurafsky Section 10.4, think of the auto-regressive selection of the 
output sequence as a treat with probabilities at each layer. 
 
 
 
 
Input: the clean river flowed …. 
Outputs, produce from many invocations of inference of the trained model: 
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Notice how the most probable Word 1 doesn’t lead to the most probable 
sequence of Word 1, Word 2, Word 3.  (.015 or .006 vs. .021) 

But to get the best probability sequence is very hard. ◦
 
 
Method 2: Beam Search is a heuristic that prunes the full search tree a lot. 
 
General Description:  

Walk down the tree, keeping the K-most probable sequences. ◦
At each level of the tree, consider top V possible next words for each of ◦
the K sequences.  (Means you need K separate inferences instead of min 1) 
Compute the full sequence probability of those possible K x V sequences ◦

Keep the K highest ‣
repeat until have generated the number of desired tokens (or hit stop ◦
token) 
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Method 3: Sampling (most commonly used) 
 
Given: The set of output probabilities P(W0), P(W1),  …. , P(WM-1) 
 
Select: The next word through a random process, in which the probability of 
selecting word Wi is P(Wi) — how? 

In words: toss a many-sided weighted die, where the weights of each side ◦
(word) are the probability of the word. 
So, although the highest probability word is the most likely to be chosen, it ◦
isn’t necessarily chosen - depends on the relative probabilities. 

 
Illustration with an example: 
 
Consider a 3-word vocabulary: up, down, left  
Assume the neural network has generated these probabilities for next word:  
– P(up) = 0.5  
– P(down) = 0.3  
– P(left) = 0.2  
We want random process that selects up with probability 0.5, down with prob 
0.3 and left 0.2 
 
We can do that by visualizing the probabilities as shown below, and generating a 
uniformly distributed random number, R,  between 0 and 1, inclusive:  
 
 
 
 
 
If R <= 0.5 select up 
If 0.5 < R <=0.8 choose down 
If 0.8 < R <= 1.0 choose left 
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This random process has a nice side-effect: if you don’t like the output sequence 
that you get, you can just try again and get a new one. 
 
Also, this process actually reflects the fact that there are many ways to answer 
a given question, or to create language. 
 
However, this randomness is also part of the source of the ‘hallucinations’ that 
you’ve probably heard of from chatGPT/LLMs.  Some bad luck on the first word 
could just send the answer in the wrong direction!!!! 
 
This method is the most widely used; you’ll be able to see parts of it on the 
GPT-3/4 playground, and in the code in Assignment 3, Section 2. 
 
There are several variations to know about (& you’ll see in the MinGPT code): 
 

Rather than select from all M tokens in the vocabulary, only select from the •
top K most probable words. (Called top-k sampling) 
More commonly used: top-p sampling: only select from the top words that all •
together have the sum of probabilities = p (or closest).  0 <=p <= 1 

If set p = 1 that means use all M tokens/words ◦
Often p = 0.8 ◦

 
There is one more important adjustment to this process that is important: •

The probabilities from the network output are adjusted to control whether ◦
the generated sequences are more or less creative/diverse. 

 
It is done with a parameter, t, called the Temperature •
A high T gives more diverse words, done by adjusting probs before sampling •
  
T = 1 is ‘normal’ -  the probabilities are unchanged  •
T > 1 makes less probable words more likely  •
T < 1 makes more probable words more likely  •
T = 0 makes the decoding greedy •
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The probabilities are adjusted during the Softmax output computation of the 
probabilities, as shown in this equation: 
 
  
 
 
 
 
 
 
Where the li are the logits produced by the network. 
 
Other notes: 

Often a combination of top-p & temperature are the commonly used •
generation parameters 
There is also a repetition  penalty - e.g. divide li by 1.3 if the token •
corresponding to li has already been used in this generation 

 
DEMO of GPT-3/4 on playground (vs. ChatGPT) & parameters 

Show probabilities with the completion interface, effect of T, max tokens; ◦
show ‘code’ to generate using API 

 
Important Question:  given all that you’ve learned so far, why does chatGPT, 
GPT-3, GPT-4 do what you ask it to do? 

It might be that you take this for granted, now that you’ve used it since ◦
November 2022 
But what in what we’ve learned makes it do that? ◦
(& for people who know about it, I dont’ mean RLHF; that is in Lecture 9, ◦
and this basic ability came without RLHF).  Why? 

 
My Answer: because, in predicting the next words, those next words need to 
answer the question or do what is asked.   

This didn’t work, though, until the models got big enough. ◦
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