

 ECE 1786 Lecture #9

Work-in-Flight:

Assignment 4 - Decoding for Generation, Prompt Engineering for Different ◦
Tasks; due November 15
Project interim report - due Monday November 20 at 9pm ◦
Git Hub Request for access: only 25/36 teams have asked/fill form!!! ◦

Last Day: Project Proposals! (Lecture 8++)
Before That: Prompt Engineering (Lecture 7)

Today: How the Large Language Models Became Good at doing what you ask:
Reinforcement Learning from Human Feedback (RLHF)

In lectures 4,5 and 6 we covered the architecture of a transformer, the
process of training it, and then using it for text generation. Lecture 7 discussed
how to prompt a transformer generator that has been well-trained. When you
put it all together it has some key moving parts:

9 1

SelectWord
Predict Probability UsingSamplingsINPUT Tokenization Embedding Of NextWord

plaorduark 7

Explain the Explain Me Iplber
Hamelin Democracy is theEEE's III ftp.jIOMIjpj.s.gs peace

s É

Call this Iyenerator

I did leave out one thing about that training that is important: What makes the
LLMs good at doing what you ask them to do? I’ve implied that simply training a
model to predict the next word is all that it needs to become so smart, but that
isn’t quite all that is needed; there is a second layer of training.

That said, I do believe (but don’t have proof) that much of the higher-level
comprehension apparent in the models does come from this first level training.

However, if you were to use a model that is only trained the first way, you would
find that its output would be messy and unsatisfactory in many ways - poor
output (random characters and repetition and off-topic answers) would appear
more often, and the model’s ability to comprehend what you wanted would be
worse than you’ve experienced with chatGPT and GPT-4.

I’ll post an example query that shows this of what every other model ◦
looked like this time last year compared to GPT-3.5, which was what
became chatGPT (maybe show)

OpenAI led the way on this second layer of training.They call it “Reinforcement
Learning with Human Feedback.” (RLHF)

It is possible to describe the essentials of what is going on first without •
using the structure of Reinforcement Learning (RL), although there is a part
of it that needs specific RL techniques.
The core of the second layer RLHF is described in a paper by Ouyang et. Al, •
(https://arxiv.org/abs/2203.02155 also posted in the course notes) but also
described in a more readable, higher-level form in a Huggingface blog post
(https://huggingface.co/blog/rlhf that is also posted). The Llama2 paper from
Meta also speaks to some interesting issues around RLHF and safety vs.
quality the Llama2 training paper (https://arxiv.org/abs/2307.09288, also
posted).

Before we begin, let’s define a little terminology: A prompt is the text that is
input to the large model. A completion is the full sequence of text produced in
the auto-regressive loop - i.e. the sequence of tokens that become words.

9 22

Here is a summary of that ‘layer 2’ method used to make the models better,
after the initial, very extensive pre-training on very large corpora to predict the
next word:

Pay humans to create a dataset of prompts + completions (questions/answer; 1.
or requests/responses) by humans, which do a good job of answering/
responding to well formed questions/requests. Pay people to do this, and
train them well (Meta/llama2 says this quality really matters)
Fine tune the model, predicting the next word, on these specific examples 2.

Works some, but isn’t the core method A.
Build and train a classifier (really regresser) that produces a rating of the 3.
quality of the prompt+completion.

4. Use the output of the classifier to compute a loss function that judges the
completion given the prompt. It is used as a reward function in a reinforcement
learning optimization of the generator. That is, this loss (plus another) is used
to adjust the parameters in the Transformer so that the probabilities
generated ultimately make better ‘completions’ that humans prefer.

The details are interesting, with some complexity. One of the most clever parts
is that once you’ve got the classifier and this system going, it is possible to
automatically generate many more data examples (of prompts/completions) to
train on.

9 3

human inform Itf
completion d I

prompt Dc yÉ
modify d
generator
based on
loss

Step 1: Hire Humans to create good examples of prompt+completions. E.g, from
Ouyang paper, both prompt & “labeler demonstration” were human-produced:

Jumping ahead & reiterating why this step is important, we can see what the
non-RLHF’d “GPT3 175B” does with the prompt, and what the the RLHF’d one
(called “instruct GPT” back then). The first is useless, the second answers the
question.

See the Ouyang paper for many examples of this, in the appendices.
A total of 12,000 prompt completions were paid for back then
At first, these were used to do regular ‘fine-tuning’ - they were used as training
input to predict-the-next-word, as you’re familiar with from Lecture 5/6.

9 4

LI're
Uman

L

call this Sfi for Supervised fine tuning

Step 2: Train a classifier/regresser model that takes in a prompt+completion as
input and produces a rating of the quality of the completion given the prompt.
The rating is on a scale of 1-7.

To do this, collect human labels on a set of prompts + completions - again •
paying people

issue: humans are calibrated differently, one person’s 1, is another’s 5 (*) ◦
So, the regresser/classifier is trained in a more clever way - present two ◦
completions for the same given prompt; aside: what is a regresser?
 Ask humans to label both completions with on scale 1-7 ◦
The goal of the training is to make the model’s rating such that it prefers ◦
the ones that humans prefer. It is not to make the ratings match, because
of (*).

Notice that we can get as many completions as we want, by simply re-running •
the generator. That’s how we get completion1 and completion2 (**)
Aside: what sort of model should we use to make the regresser? •

Answer - a Transformer, perhaps even the same model as the LLM being, ◦
with the language head is replaced with a single regression output

9 S

prompt completion Classify
1 7
1 poor
7 good

prompt completions Omri Eaton
that

completion resses 12 ensures
r I r 2

if human rating Is
human rating

Open Al used small Get Meta uses largest LLAMA2

Step 3: Create a larger dataset of prompts + completion1, 2, 3 …. N (i.e. many
completions for a given prompt, using (**). Use those as training data for a new
round of different training of the generator, that makes use of the step 2
classifier:

Can generate many completions, as said, so lots of potential data •
Confession - this “PPO-RL modification of the generator is too complex for me •
to understand and explain

What is “anchor”? It turns out that without a key addition to the loss function,
this feedback/loss will cause the generator to lose its basic knowledge.

The regresser human preference goal will override the basic knowledge ◦
The generator output logits/probabilities need to be ‘anchored’ to that ◦
knowledge, while they are also being ‘pulled’ by this loss to create a good
quality human preferred output

Loss = f(Classifier(prompt+completion), model outputs of Unchanged SFT)

The unchanged SFT is the model after step 1. •
Take all the logits of SFT, and the logits and of the generator, and force •
them to stay reasonably close.

The picture below, from the Huggingface blog, gives some sense of the whole
process. It makes use of terminology from Reinforcement Learning that I have
not used.

“Policy” = the generator language model being tuned; ◦
“Reward Model” = the Regresser that was trained to figure out how good a ◦
prompt+completion is

9 6

completion
Anchor

orompt 7 Generator a regresser 7hL Loss
I
modify generation LLM
parameters using PPO

I Key

Supervised Fine Twig

ECE 1786 Project Progress Report
Due on November 20 ◦
Hard word limit - 1000, with penalty ◦
Goal is to make sure you’re pushing for progress! ◦
See the assignment on line for the deeper description, also attached below ◦

9 7

looks like
gradientdescent

SF

 1

ECE 1786 Project Progress Report

The project progress report is a check-in to show that you are on track to complete your
project. By the project progress date, you should have made good progress on:

• Collecting data if that was a part of your plan
• Producing a baseline model or have good clarity and done the work necessary

to make a comparison that shows your approach is working or not
• Producing at least one result, including one qualitative or quantitative

comparison
• Reflected upon the feedback given at proposal time

The report document demonstrates your progress. The document has a word limit of
maximum of 1000 words, which is a hard limit as usual.

Some of the sections are similar to your project proposal. You may find that when you
look at your previous writing of that proposal a second time, that you find ways of
expressing your ideas more concisely.

The word limit is hard: There is a 1% penalty for every word more than the 1000
limit. Please count the words in your document, compute the penalty, and put it on the
front page. These characters/words are not included in the word count, nor are pictures
or references.

There is a penalty-free grace period of one hour past the deadline. Any work that is
submitted between 1 hour and 24 hours past the deadline will receive a 20% grade
deduction. No other late work is accepted.

The progress report should have the following sections:

Introduction

• Give a clear (re)statement of the goal of your project, making use of the
feedback you received on the proposal, and any adjustments you've made
since the proposal.

Data Processing

• Describe the data that you have collected and cleaned to date. Be clear and
specific when describing what you’ve done, so that a classmate can reproduce
your work. If at all possible, show some statistics about your cleaned data (e.g.
number of examples in each class), and at least one example of a cleaned
training data. Since no plan ever survives first contact with reality, this section
will probably be different from what you wrote in your proposal.

 2

• Note that class 2 projects may not need as much data as class 1
projects. However, there is almost always a need for some kind of hold-out
test set, and your work in that direction should be described here.

Baseline Model or Comparison Method

• Briefly describe (again) your baseline model or comparison method that you
created to compare with your neural network. This may have evolved from
your proposal, so indicate what has changed if anything. The essence of this
section is to show that you've progressed in having a way to determine how
well you are succeeding, so far.

Architecture

• Give a new, better description of the architecture that you plan to build, and
how far along you are in creating it. This description should be more detailed
than in your initial proposal, and in many cases, hopefully much better as
described in the feedback. There should be clarity on how information/data
flows throughout the model.

Result

• At least one result or comparison between your system and either the
baseline or using the comparison method described above. You are not
measured on how well it is working at this point, just if you're able to make a
sensible comparison. For some problems. Quantitative measures are
preferred, but if you can make a case for a qualitative comparison, that’s okay
too.

 Discussion

• Discuss your results, including at least one set of training curves if applicable,
or otherwise use some other metrics. Do you think your system is performing
well? Base your discussion on both the results that you have shown, and the
interpretation of your training curve. What issues, particular to your project,
will you have to overcome?

Team Work and Progress

• Describe how well your team is working together. Take a look at the divided
tasks and deadlines you set earlier. How is each person doing? What has each
person accomplished?

