
         
        ECE 1786 Lecture #9 
 
Work-in-Flight:  

Assignment 4 -  Decoding for Generation, Prompt Engineering for Different ◦
Tasks;  due November 15 
Project interim report - due Monday November 20 at 9pm ◦
Git Hub Request for access: only 25/36 teams have asked/fill form!!! ◦

 
Last Day: Project Proposals! (Lecture 8++) 
Before That: Prompt Engineering (Lecture 7) 
 
Today: How the Large Language Models Became Good at doing what you ask: 
Reinforcement Learning from Human Feedback (RLHF) 
 
In lectures 4,5 and 6 we covered the architecture of a transformer, the 
process of training it, and then using it for text generation. Lecture 7 discussed 
how to prompt a transformer generator that has been well-trained.  When you 
put it all together it has some key moving parts: 
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I did leave out one thing about that training that is important: What makes the 
LLMs good at doing what you ask them to do?  I’ve implied that simply training a 
model to predict the next word is all that it needs to become so smart, but that 
isn’t quite all that is needed; there is a second layer of training. 
 
That said, I do believe (but don’t have proof) that much of the higher-level 
comprehension apparent in the models does come from this first level training. 
 
However, if you were to use a model that is only trained the first way, you would 
find that its output would be messy and unsatisfactory in many ways - poor 
output (random characters and repetition and off-topic answers) would appear 
more often, and the model’s ability to comprehend what you wanted would be 
worse than you’ve experienced with chatGPT and GPT-4. 

I’ll post an example query that shows this of what every other model ◦
looked like this time last year compared to GPT-3.5, which was what 
became chatGPT (maybe show) 

 
OpenAI led the way on this second layer of training.They call it “Reinforcement 
Learning with Human Feedback.” (RLHF) 
 

It is possible to describe the essentials of what is going on  first without •
using the structure of Reinforcement Learning (RL), although there is a part 
of it that needs specific RL techniques.  
The core of the second layer RLHF is described in a paper by Ouyang et. Al, •
(https://arxiv.org/abs/2203.02155 also posted in the course notes) but also 
described in a more readable, higher-level form in a  Huggingface blog post  
(https://huggingface.co/blog/rlhf that is also posted). The Llama2 paper from 
Meta also speaks to some interesting issues around RLHF and safety vs. 
quality the Llama2 training paper (https://arxiv.org/abs/2307.09288, also 
posted). 

 
Before we begin, let’s define a little terminology: A prompt is the text that is 
input to the large model.  A completion is the full sequence of text produced in 
the auto-regressive loop - i.e. the sequence of tokens that become words. 
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Here is a summary of that ‘layer 2’ method used to make the models better, 
after the initial, very extensive pre-training on very large corpora to predict the 
next word: 

Pay humans to create a dataset of prompts + completions (questions/answer; 1.
or requests/responses) by humans, which do a good job of answering/
responding to well formed questions/requests.  Pay people to do this, and 
train them well (Meta/llama2 says this quality really matters) 
Fine tune the model, predicting the next word, on these specific examples 2.

Works some, but isn’t the core method A.
Build and train a classifier (really regresser) that produces a rating of the 3.
quality of the prompt+completion. 

4.  Use the output of the classifier to compute a loss function that judges the 
completion given the prompt.  It is used as a reward function in a reinforcement 
learning optimization of the generator.  That is, this loss (plus another) is used 
to adjust the parameters in the Transformer so that the probabilities 
generated ultimately make better ‘completions’ that humans prefer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The details are interesting, with some complexity.  One of the most clever parts 
is that once you’ve got the classifier and this system going, it is possible to 
automatically generate many more data examples (of prompts/completions) to 
train on. 
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Step 1: Hire Humans to create good examples of prompt+completions. E.g, from 
Ouyang paper,  both prompt & “labeler demonstration” were human-produced: 
 
 

Jumping ahead & reiterating why this step is important, we can see what the 
non-RLHF’d “GPT3 175B” does with the prompt, and what the the RLHF’d one 
(called “instruct GPT” back then).  The first is useless, the second answers the 
question. 
 
 

See the Ouyang paper for many examples of this, in the appendices. 
A total of 12,000 prompt completions were paid for back then 
At first, these were used to do regular ‘fine-tuning’ - they were used as training 
input to predict-the-next-word, as you’re familiar with from Lecture 5/6. 
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Step 2:  Train a classifier/regresser model that takes in a prompt+completion as 
input and produces a rating of the quality of the completion given the prompt.  
The rating is on a scale of 1-7. 
 
 
 
 
 
 
 

To do this, collect human labels on a set of prompts + completions - again •
paying people 

issue: humans are calibrated differently, one person’s 1, is another’s 5 (*) ◦
So, the regresser/classifier is trained in a more clever way - present two ◦
completions for the same given prompt;  aside: what is a regresser? 
 Ask humans to label both completions with on scale 1-7 ◦
The goal of the training is to make the model’s rating such that it prefers ◦
the ones that humans prefer.  It is not to make the ratings match, because 
of (*). 

 
 
 
 
 
 
 
 
 
 
 

Notice that we can get as many completions as we want, by simply re-running •
the generator.  That’s how we get completion1 and completion2 (**) 
Aside: what sort of model should we use to make the regresser? •

Answer - a Transformer, perhaps even the same model as the LLM being, ◦
with the language head is replaced with a single regression output 
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Step 3:  Create a larger dataset of prompts + completion1, 2, 3 …. N (i.e. many 
completions for a given prompt, using (**).  Use those as training data for a new 
round of different training of the generator, that makes use of the step 2 
classifier: 
 
 
 
 
 
 
 
 
 

Can generate many completions, as said, so lots of potential data •
Confession - this “PPO-RL modification of the generator is too complex for me •
to understand and explain 

 
What is “anchor”?  It turns out that without a key addition to the loss function, 
this feedback/loss will cause the generator to lose its basic knowledge. 

The regresser human preference goal will override the basic knowledge ◦
The generator output logits/probabilities need to be ‘anchored’ to that ◦
knowledge, while they are also being ‘pulled’ by this loss to create a good 
quality human preferred output 

 
Loss = f( Classifier(prompt+completion), model outputs of Unchanged SFT) 
 

The unchanged SFT is the model after step 1. •
Take all the logits of SFT, and the logits and of the generator, and force •
them to stay reasonably close. 

 
The picture below, from the Huggingface blog, gives some sense of the whole 
process. It makes use of terminology from Reinforcement Learning that I have 
not used.  

“Policy” = the generator language model being tuned; ◦
“Reward Model” = the Regresser that was trained to figure out how good a ◦
prompt+completion is 
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ECE 1786 Project Progress Report 
Due on November 20 ◦
Hard word limit - 1000, with penalty ◦
Goal is to make sure you’re pushing for progress! ◦
See the assignment on line for the deeper description, also attached below ◦

 
 
 
 
 
 
 

9 7

looks like
gradientdescent

SF



 1 

ECE 1786 Project Progress Report 

The project progress report is a check-in to show that you are on track to complete your 
project. By the project progress date, you should have made good progress on: 

• Collecting data if that was a part of your plan 
• Producing a baseline model or have good clarity and done the work necessary 

to make a comparison that shows your approach is working or not 
• Producing at least one result, including one qualitative or quantitative 

comparison 
• Reflected upon the feedback given at proposal time 

The report document demonstrates your progress. The document has a word limit of 
maximum of 1000 words, which is a hard limit as usual. 

Some of the sections are similar to your project proposal. You may find that when you 
look at your previous writing of that proposal a second time, that you find ways of 
expressing your ideas more concisely. 

The word limit is hard: There is a 1% penalty for every word more than the 1000 
limit. Please count the words in your document, compute the penalty, and put it on the 
front page. These characters/words are not included in the word count, nor are pictures 
or references. 

There is a penalty-free grace period of one hour past the deadline. Any work that is 
submitted between 1 hour and 24 hours past the deadline will receive a 20% grade 
deduction. No other late work is accepted. 

The progress report should have the following sections: 

Introduction 

• Give a clear (re)statement of the goal of your project, making use of the 
feedback you received on the proposal, and any adjustments you've made 
since the proposal. 

Data Processing 

• Describe the data that you have collected and cleaned to date. Be clear and 
specific when describing what you’ve done, so that a classmate can reproduce 
your work. If at all possible, show some statistics about your cleaned data (e.g. 
number of examples in each class), and at least one example of a cleaned 
training data. Since no plan ever survives first contact with reality, this section 
will probably be different from what you wrote in your proposal. 
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• Note that class 2 projects may not need as much data as class 1 
projects.  However, there is almost always a need for some kind of hold-out 
test set, and your work in that direction should be described here. 

Baseline Model or Comparison Method 

• Briefly describe (again) your baseline model or comparison method that you 
created to compare with your neural network. This may have evolved from 
your proposal, so indicate what has changed if anything.  The essence of this 
section is to show that you've progressed in having a way to determine how 
well you are succeeding, so far. 

Architecture 

• Give a  new, better description of the  architecture that you plan to build, and 
how far along you are in creating it.  This description should be more detailed 
than in your initial proposal, and in many cases, hopefully much better as 
described in the feedback.   There should be clarity on how information/data 
flows throughout the model. 

Result 

• At least one result or comparison between your system and either the 
baseline or using the comparison method described above. You are not 
measured on how well it is working at this point, just if you're able to make a 
sensible comparison. For some problems. Quantitative measures are 
preferred, but if you can make a case for a qualitative comparison, that’s okay 
too. 

 Discussion 

• Discuss your results, including at least one set of training curves if applicable, 
or otherwise use some other metrics. Do you think your system is performing 
well? Base your discussion on both the results that you have shown, and the 
interpretation of your training curve. What issues, particular to your project, 
will you have to overcome? 

Team Work and Progress 

• Describe how well your team is working together. Take a look at the divided 
tasks and deadlines you set earlier. How is each person doing? What has each 
person accomplished? 

 


