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Introduction 

In the game RimWorld, each character spawns with a backstory that contains a title, a description 

and skill modifiers. These backstories serve as a critical element in enriching the game's narrative, 

providing depth to in-game personas. However, the creation of descriptions for backstories is a 

labor-intensive process if done manually, while being inaccurate if automated using LLMs like 

ChatGPT.  

In response to this challenge, our project seeks to find a compromise between these two, 

developing a storytelling machine that generates background description for character backstories 

for RimWorld, tailored to a character’s title and skill modifiers, while adhering to the linguistic 

style of the game’s lore and world setting, by fine-tuning a GPT-2 Small, a much smaller model 

with only 124 million parameters that can run on consumer PCs. 

 

Illustration / Figure 

 

 

Figure 1. Basic Illustration of LSTM 

Figure 1 shows the basic workflow of LSTM. Given a character and its information, the model 

will output the background description of this specific character. Our main job here is to fine-tune 

the pretrained GPT model with the backstory dataset that was collected. 



Background & Related Work 

As of today, there’s no other work like this project that takes a title and skill modifiers as input 

and generates a description for backstories in RimWorld. The closest one is a “Rimworld 

Backstory Generator” [1] that generates an entire backstory at random, and it doesn’t seem to 

utilize a transformer as the outputs are random selections of predefined lists of words.  

However, there do exist projects that use transformers to generate stories. One example of this 

would be fabled.ai [2], which is a transformer-based story generator that takes a sentence 

describing the plot and the styles of text as prompt, and generates a story and images based on the 

given prompt. This approach also had the problem of generating stories that have elements that 

don’t align with the lore of RimWorld. 

 

Data and Data Processing 

The backstories are collected from the files of the base game, its downloadable contents (DLCs), 

and several mods of RimWorld. There are 2073 different backstories in total. All the backstories 

are stored in XML files. See Appendix A for a screenshot of the XML files. Only 3 parts in each 

backstory are used for the purpose of this project, and these are: 

• Title: The occupation of the character.  

• Description: This is what we are trying to make the model generate.  

• Skill Modifiers: These are the additional attributes of the character that will alter the generated 

description based on its value. 

Since XML files can’t be used directly to fine-tune a GPT-2 model, the information of interest was 

extracted and stored into a pandas dataframe. Data cleaning was also performed on the description 

strings by replacing strings like “{PAWN_gender ? he : she}” by “[PAWN_pronoun]”, since both 

means the same thing – “he” or “she” depending on the gender of the character using this 

backstory. This is to reduce the number of domain-specific special tokens the model needs to learn. 

During training, the dataframe is split into a 90/10 train test split using sklearn. A fixed template 

is used to rephrase each row of data into a training example, which is of the structure: “This is the 



story of [PAWN_nameDef], a ”+ Title +“: Descriptions”. One example of a training example will 

be:  

“This is the story of [PAWN_nameDef], a sewer kid: [PAWN_nameDef] grew up in the sludge-

smeared sewers of a polluted industrial world.\n\n[PAWN_pronoun] befriended the strange 

insects in the darkness, and learned to love them”. 

 

Architecture and Software 

Our prototype model is a fine-tuned GPT-2 Small model with an LM head. Figure 2 shows the 

architecture with two branches: the fine-tuning process at the top, and the generation process at 

the bottom. During fine-tuning, the title, skill modifiers and description will be compiled into a 

full sentence using the template. Training will stop when the test loss starts to go up in 3 out of the 

last 5 epochs. 

When the model is deployed for actual usage, the input sentence including first part of the template 

containing title and skill modifier will be fed into the model, and the model will generate a 

description based on characters title and their different skill modifiers. 

 

Figure 2. Architecture of LSTM 

Most of the libraries that was used for the training are standard machine learning libraries like 

Pytorch, Transformers, Pandas, Numpy, Sklearn, Matplotlib and Tqdm. Apart from these only the 

XML library was used, and its purpose was to extract information from the XML files. Gradio was 

used to build the UI. The details of the user interface can be found in Appendix B. 



Baseline Model or Comparison 

We chose to compare our fine-tuned GPT-2 Small model with a pretrained GPT-2 Large model to 

assess whether our fine-tuned model meets our initial goals. To evaluate our model, we established 

5 metrics which are listed in the table below in the quantitative results part. To carry out the 

evaluation, the titles and skill modifiers from the first 100 backstories in the testing dataset were 

chosen and compiled, and then fed into both model to generate a total of 200 descriptions. 

We then manually labeled whether the generated background descriptions meet our criterions and 

counted the number. If our fine-tuned model generated a visibly larger amount of descriptions that 

meets a particular metric than the baseline model, it will indicate success in that metric. 

 

Quantitative Results 

Metrics Fine-tuned  

GPT-2  

GPT-2 

Large 

Test loss 1.21 3.02 

Is the generated description grammatically correct and coherent?  88 61 

Are the special tokens like [PAWN_nameDef] used correctly? 93 80 

Is the model correctly generating description for the title given?  94 68 

Does the generated description fit the game’s lore? 95 37 

Does the generated description follow the style of game text? 91 27 

This table shows the quantitative comparison between our model and the baseline model. It can be 

seen that our model has greatly improved performance in terms of linguistic style and 

conformation to the game’s lore, and there are also reasonable improvements in terms of the 

learning of special tokens and generating descriptions that fit the title. However, the grammar 

quality, although being better than the baseline model, still has space for improvement. 

 



Qualitative Results 

Since this project is about text generation, it is decided that it is best to show our analysis of the 

quality of this project accompanied by examples. Below are two sets of comparisons, with bold 

green text indicating good performance and bold red text indicating failure. 

We will first use the fine-tuned model to generate a description for the title “medieval lord” with 

skill modifiers “social +7, melee +5, shooting +5”, found in our dataset. Here’s the output of our 

model: 

[PAWN_nameDef] inherited all the family’s wealth when [PAWN_pronoun] was a lord in a 

medieval kingdom. [PAWN_possessive] social skills improved after a succession of years of rule, 

and eventually [PAWN_perspective] could be crowned lord and emperor. 

For reference, here’s the description for the same title and skill modifiers in our dataset, in the file 

raw_data/story/basegame/Offworld_Medieval_Adult.xml: 

[PAWN_nameDef] was a lord on a preindustrial planet. [PAWN_pronoun] went to parties, 

managed the underlings, and even learned some swordplay.\n\n[PAWN_possessive] soft hands 

did not hold a work tool during that entire time. [PAWN_pronoun] considers manual labor to be 

beneath [PAWN_objective]. 

The description generated by the fine-tuned model fits the title, and it did talk about the social skill 

that was given but neglected the melee and shooting skills. This is no big deal though, since the 

original description didn’t talk about the shooting skill modifier either. Aside from this, the only 

flaw in the generated description is the misused [PAWN_perspective] special token, which did not 

exist in the dataset. 

 

To investigate whether our model is indeed able to generate different descriptions when the input 

skill modifiers differ, we will use the model to generate 2 different descriptions for the title 

“mechanoid operator” – which isn’t in the training data – with different skill modifiers.  

The description generated with skills “intellectual -3, crafting +4, shooting +2” is: 



[PAWN_nameDef] made robots out of mechanoids, but [PAWN_pronoun] was adept at the art of 

manipulation. [PAWN_pronoun] often used [PAWN_possessive] hands to get into tight systems, 

and occasionally would remove a piece of code by bending it or smashing it. 

The description generated with skills “intellectual +4, crafting -2, shooting +2” is: 

[PAWN_nameDef] grew up in an industrial complex, working on industrial 

robotics.\n\n[PAWN_pronoun] learned plenty about robotics, and the military’s industrial 

mechanoid army, but was never particularly good at handling simple machines. 

[PAWN_pronoun] learned a lot from one mechanoid and a few from another. 

From this example it is clear that the model can indeed generate descriptions that reflect the skill 

modifiers given. For negative intellectual skills, it says that the character occasionally would 

remove piece of code by mistake, and for positive intellectual skills it says that the character 

learned a lot about robotics. Similarly, it also talks about how a character with positive crafting 

skills is “adept at the art of manipulation”, and one with negative crafting skills was never good at 

handling machines. The shooting skills however, for some reason, got ignored. There is also a 

factual error in the first description where it talked about physically breaking a piece of code. 

 

Discussion and Learnings 

Overall, it should be safe to say that this model has achieved our initial goals. Specifically, when 

provided with a character and its corresponding skill values, the model generates a comprehensive 

background description for the character. The descriptions produced by our model surpass those 

of our baseline model across various metrics and criterion we made, demonstrating superior logical 

and creative elements.  

On the other hand, the handling of skill modifiers was reasonable but not perfect. Sometimes the 

model simply ignores the skill modifiers given. We concluded that this is due to limitations brought 

by the dataset since a large portion of the backstories in the dataset have skill modifiers that is 

unrelated to their corresponding description.  



During the development of our model, we also tried adding the special tokens to the tokenizer’s 

vocabulary, but this turns out to be a bad idea as it gives worse results. Later we discovered that 

this is most likely due to us not setting the model to train the embeddings of these special tokens, 

so this could be a point for future improvement. 

Finally, the length and intricacy of the generated descriptions can also be improved. Currently we 

have no control over the length of the generated story. The only thing we can do is to set a limit 

for the maximum number of tokens and hope the generation doesn’t end abruptly at the end.  

 

Individual Contributions 

Task Done by 

Collecting raw data Colin 

Preprocessing the dataset which turns raw xml files into pandas dataframe  Tianze 

Splitting the sentence data and completing the tokenization process  Tianze 

Writing the dataset class to load the data Colin 

Writing the collate function for dataset padding Tianze 

Writing the main training loop Colin 

Writing the description generation process of model Colin 

Visualizing the training process for better debugging Colin 

Building baseline model for comparison Tianze 

Writing the Gradio implementation of the user-facing side of the project Tianze 

Conducting the evaluation of the outputs and the comparison of the two models Both 

Writing final report Both 
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Appendix A 

This is a screenshot of a backstory from an XML file. The relevant information is surrounded by 

green boxes. 

 

 

 

 

 



Appendix B 

Below is the layout of the user interface. The user will input the character title and three skill 

modifiers ranging from -9 to 9. Optionally the user can also provide the name and gender of the 

character are replace the special tokens accordingly. 
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