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1. Introduction 1

Redaction is the removal of sensitive information from private records (Figure 1). It has broad
applications, including court cases [1], confidential emails [2], and medical records [3]. With the
development of large language models (LLMs), there is increasing pressure to prevent these
tools from revealing redacted text.

Figure 1: Sample redacted excerpt from the Mueller Report [4]

In this project, we intend to test the ability of transformer models to predict redacted text. We
focus on declassified United States (US) government documents focusing on the 9/11 attacks. If
we can train a language model to accurately predict censored information, we demonstrate proof
of concept for a method of reversing redaction. Instead of directly working with redacted
documents, we simulate this effect by masking tokens (section 3). Our model will be a toy
example of one which, in the context of US federal elections, could have significant implications
by predicting redacted information related to the modern candidates.

2. Illustration

Figure 2 shows the models we train to predict masked tokens, along with sample masked input
and top 10 candidates to replace the masked token and their likelihoods.

3. Background and Related Work 1

In most cases, models are trained to improve redaction, which entails (a) identifying text that
should be redacted and (b) checking whether models can predict masked text. We only intend to
work on (b).

1 Modified version from project proposal



Figure 2: Overview of models and sample input-output

A paper published in the Massachusetts Institute of Technology’s Computational Linguistics
journal curated the Text Anonymization Benchmark (TAB), an open-source corpus for text
anonymization based on court proceedings [1]. They propose metrics for assessing the quality of
redaction (i.e. whether it masks the correct information), and compare the performance of a
Longformer model fine-tuned on TAB to several other baseline models on out-of-domain data,
finding that it performs better.

The ability of transformer models to predict masked tokens raises privacy concerns for
documents containing redacted text. Researchers from Trinity College Dublin used BART to
generate the top 5 most likely representations of redacted text [5]. They then propose a privacy
evaluation metric by computing the similarity of generated outputs - the higher the similarity, the
lower the privacy retention score.

3. Data and Data Processing

The Central Intelligence Agency (CIA) Reading Room website [6] provides access to scanned
government documents as PDF files. We retrieved six declassified documents related to the 9/11
attacks from this site along with the PDF of the 9/11 commission report [7].

To extract text from the scanned PDFs, we convert them to image format using Python’s
pdf2image library [8]. We also convert the commission report PDF to a PNG file using Apple



Preview. We then use Python’s pytesseract library [9] to extract text contained within the images,
save results to text files, and consolidate the text files into a master text file. Figure 3 summarizes
the data processing pipeline. Due to some anomalies in the scanned PDFs (Figure 4) and
pytesseract misinterpreting some words, manual cleaning was necessary to ensure the cleaned
master text file contained coherent words and sentences.

Next, we use a Python dictionary to rank the most frequent words and identify 72
domain-specific keywords relevant for training a model. They include names such as Bin Laden,
acronyms like CIA and FBI, or organizations like Al Qaeda. These keywords were chosen
arbitrarily based on prior knowledge of the subject matter. We acknowledge that by studying the
documents in more detail, better keywords could have been chosen. Nonetheless, we believe
these keywords are adequate for a proof of concept.

Figure 3: Data processing pipeline

Figure 4: Anomalies in scanned PDF documents



To generate training examples, we take the keywords and one word before and after as labels,
and the surrounding line of text as context. We only set a target if it is a keyword or is already in
the model tokenizer’s vocabulary (Figure 5). We add every keyword to each model’s tokenizer
and make a custom training dataset for each model. We originally attempted to use four lines of
context and five target word candidates on each side of the keyword, adding all possible target
words to each model tokenizer’s vocabulary, but this proved infeasible with the computational
resources available on Colab Pro (section 8).

Example: For a history of the DCI’s authority over the intelligence community, see CIA
report

- For a history of the DCI’s authority over the intelligence community, [MASK] CIA
report

- ✅ see is part of the model tokenizer’s vocabulary
- For a history of the DCI’s authority over the intelligence community, see [MASK]

report
- ✅ CIA is part of the model tokenizer’s vocabulary

- For a history of the DCI’s authority over the intelligence community, see CIA [MASK]
- ❌ report is not part of the model tokenizer’s vocabulary

Figure 5: Example of training sample generation

We tokenize the datasets, replacing the target word with a [MASK] token. Without knowing the
text in the redacted segments, we couldn’t consider any redacted sentences for training. Due to
our limited set of target words and context in training, we couldn’t generate plausible predictions
for redacted segments after training. Our training-validation-test splits are shown in Table 1.

Model Mask
Labels

Dataset
Examples

Train
Examples

Validation
Examples

Test
Examples

gpt2
(124M params)

404 15947 (39.4
examples per

label)

11162
(70%)

1674
(10.5%)

3111
(19.5%)

bert-base-cased
(109M params)

590 16343 (27.7
examples per

label)

11440
(70%)

2451
(15%)

2452
(15%)

deberta-base
(100M params)

404 15947 (39.4
examples per

label)

11162
(70%)

1914
(12%)

2871
(18%)

Table 1: Training, validation, and test splits, splits vary due to Colab RAM limits (section 8)



4. Architecture and Software

This is a Class 1 project, meaning we fine-tune pretrained models. We also train embeddings for
the new tokens representing keywords identified in section 3. We use: (1) GPT-2: autoregressive
transformer using only words preceding the target as context (2) BERT: bidirectional transformer
which uses words before and after the target as context (3) DeBERTa: a smaller version of BERT
which separates position and word embeddings. These pre-trained transformer models are
available on Hugging Face [10], under the names gpt2, bert-base-cased, and
microsoft/deberta-base.

To measure accuracy, we use top-k accuracy with k = 10, meaning if the model predicts that the
label is among the ten most likely candidates, we consider it to have made a correct prediction.
With smaller values of k, accuracy decreases, but we want the model to generate several possible
answers to simulate prediction using decoding methods such as beam search and sampling.

5. Baseline Model or Comparison

First, we want to see if BERT and DeBERTa outperforms GPT-2, as they are bidirectional so
they have access to the entire line of context, whereas GPT-2 only has access to words preceding
the target. Second, we want to compare model sizes, namely between BERT and DeBERTa. We
want to see which model has a higher accuracy, and if BERT displays more overfitting due to
being a larger model. Finally, we want to see if DeBERTa’s separate positional and word
embeddings outperforms BERT.

6. Quantitative Results
We explore batch size and learning rate as hyperparameters to optimize training. Due to long
runtimes and previous issues with larger training sets, we explore only four hyperparameter
combinations for each model. The best test accuracy was achieved by BERT (93%), while
DeBERTa was close (91.7%) and GPT-2 lagged behind (62.2%). Tables 2a, 2b, and 2c
summarize the test accuracy of all experiments

gpt2

BS: 32 BS: 64

LR: 5e-5 35.42% 37.61%

LR: 5e-4 62.20% 52.04%

(a)

deberta-base

BS: 32 BS: 64

LR: 5e-5 89.72% 87.01%

LR: 5e-4 48.66% 91.68%

(b)

bert-base-cased

BS: 50 BS: 100

LR: 5e-6 71.73% 70.00%

LR: 5e-5 92.99% 90.62%

(c)
Tables 2a, 2b, 2c: Experiments - LR denotes learning rate and BS denotes training batch size.



We found that only BERT, despite its accuracy, exhibited some overfitting, as the validation loss
lags behind the training loss. This suggests that BERT might perform even better with different
hyperparameters, or on a larger dataset. This supports our hypothesis that BERT can overfit
when DeBERTa doesn’t, given it is a larger model. The accuracy and loss curves of the best of
each model are shown below in Figures 6a, 6b, and 6c.

Figure 6a: Loss and accuracy curves of the BERT model

Figure 6b: Loss and accuracy curves of the GPT-2 model

Figure 6c: Loss and accuracy curves of the DeBERTa model



7. Qualitative Results

We found many examples supporting our hypothesis that GPT-2 performs worse than BERT due
to BERT’s bidirectionality. For example, on a prompt which reads “head of the media committee,
he would take charge of producing the propaganda video [MASK] Qaeda issued follow-”, GPT-2
can’t guess the masked label, since it can’t learn that “al” frequently precedes “Qaeda” but
BERT can. BERT also correctly identifies the mask in the input “to [MASK] Moussaoui from
obtaining any further training that he could use to” - here GPT-2 only has one word of context
so it fails to guess correctly, but BERT uses the entire line. DeBERTa performed similarly to
BERT with such examples.

We found that BERT outperforms DeBERTa in cases of frequently used words which were
already in the tokenizer’s vocabulary. For example, DeBERTa could not identify “among” as the
label for the input “Jan. 31, 1997; Intelligence report, Cooperation [MASK] Usama Bin Laden's
Islamic Army, Iran, and the NIF Jan. 31”, but BERT can. This performance difference could be
due to the different sizes of the models, or is a limitation of decoupling the positional and
contextual embeddings in DeBERTa. Finally, all models performed poorly on infrequently used
or new tokens, which is to be expected when embeddings starting in a randomized state are not
sufficiently trained.

8. Discussion and Learnings

Balancing the scope of the training data with available computational resources was challenging.
We had to scale back the number of labels, the number of new embeddings added to each
tokenizer, and the context for each training example (section 3). The GPU RAM would overflow
during evaluation, even with a small validation set. This was because the entire validation set is
passed to the evaluation function in Hugging Face’s Trainer class [10]. A large validation batch
size forces the GPU to manage each example’s interaction with each model parameter, and the
resulting probability tensors, spanning the entire vocabulary, are kept in GPU RAM for the
evaluation process.

To mitigate these issues, we scaled down the dataset, reduced the batch size to prevent overflow
while still allowing fast evaluation, and added a parameter in the training arguments which
passes the validation results to CPU memory after every evaluation step. We also added a custom
callback for each trainer which set the model to evaluation mode so gradients don’t accumulate
during evaluation. Although Hugging Face implements this in their source code [10] for their
evaluation function, it nonetheless allowed a tenfold increase in validation sizes. In the future,
we will start with a conservative scope and gently scale up, instead of being too ambitious then
scaling down.

We also learned how difficult data processing can be when working with scanned PDFs. In the
future, we will carefully clean all document images, automate image processing further and run



tests on known documents to improve the pipeline. Despite these issues, we demonstrated that
bidirectional LLMs can bypass redaction provided sufficient context.

9. Individual Contributions

Contributions to the project were equal. Aiden found, processed, and cleaned the raw data, then
generated custom training sets for each model, while Esmat generated initial results for the GPT
and BERT models. Aiden found how to mitigate RAM overflow and trained the BERT model to
completion. Esmat adapted these methods for DeBERTa and GPT-2 and collected all results.
Many of the choices about scaling of the project was a collaborative effort.
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