

Word count: 1758 (typed, including references, individual contributions, tables,
and captions) + 231 (In images) = 1989 (total)

TalkMaster
An AI Assistant for speedy technical support

Report by:

Ruchita Rajkumar Bhadre

Sammed Jitendra Kamboj

1. Introduction

The Learning Space Management (LSM) at the University of Toronto (UofT) is the department
that manages the central or 'shared' space at University of Toronto. Tech2U is a program offered
by LSM to humanize tech support across campus. The current workflow of a TalkMaster includes
answering intercom calls from classrooms, resolving the issues remotely using various apps
shown in Fig 1, and dispatching staff to room if necessary. This process is time-consuming and
requires experienced personnel to provide support. To address this, we leveraged the capabilities
of large language models and built an AI solution to aid in decision-making.

Fig 1: TalkMaster station

2. Background

Natural Language Processing (NLP) is a nuanced field and has been the most researched in the
past few years. The classical NLP techniques relied on approaches such as the Bag of Words
model, n-grams, and other traditional methods [1]. In the field of machine translation, there was
a big step forward with the adoption of deep learning. Initially, researchers explored the use of
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks, which
demonstrated superior performance compared to traditional approaches [2]. Subsequently,
attention mechanisms were introduced to further enhance the capabilities of RNNs and LSTMs
[3]. The invention of Transformers was a game changer. This innovative architecture, designed
specifically for language translation, had a profound impact on the field [4].

Transformers evolved into powerful language models, with models like GPT-2 highlighting the
potential of large-scale pre-trained models [5]. This trend continued with the emergence of Large
Language Models (LLMs) like GPT3 [6], Mistral 7B [15], and Llama2[14]. However, there are
limitations on practical use due to hallucinations, the model's knowledge cutoff date, and privacy
and ethical concerns related to API calls. In the realm of chatbots, the Retrieval Augmented
Generation (RAG) approach has gained attention. RAG leverages both retrieval and generation
mechanisms to enhance chatbot performance [7].

This project adopts a hybrid approach, combining classification techniques and RAG to address
specific challenges. Classification helps in identifying the need to send a staff member to
classroom while RAG improves response generation by incorporating information retrieved from
a predefined knowledge base.

3. Solution Architecture

Fig 2: System Architecture

The system has two tasks:

i. Classification (Should send staff to room or not?)
ii. RAG (If not, how to solve it remotely?)

4. Data Processing

4.1 Classification.

The data used for classification task was the daily TalkMaster logs. It consisted of room number,
time, description of problem, and various categories to identify the type of problem.

Uncleaned data had 5687 entries.

Data processing for the classification task involved:

 Data cleaning to remove false alarms, no response, accidental calls and other non-
relevant information.

 Data labelling for the label- “Sent staff to room?”.
 Removing punctuation and converting entire text to lowercase for better comparison.

Fig 3: Processed Data for classification

After preprocessing the data-

No. of entries 4442

No. of positive examples 1326

No. of negative examples 3116

Top (Description on problem) login

Table 1. Description of talkmaster daily log data

Finally for the input to model, we combined the room number and description of problem into a
single prompt.

e.g. “MS 4171 microphone not working”

4.2 Retrieval Augmented Generation (RAG)

The second source of data that was available was talkmaster knowledgebase. The data was
hosted on Microsoft SharePoint. The knowledgebase consists of troubleshooting steps for many
issues, and it is continuously evolving.

Fig 4: Talkmaster knowledgebase

We converted all the files available (39 documents) in knowledge base into pdfs files. The data
ingestion pipeline for RAG system can be illustrated in Fig 5.

Fig 5: Data ingestion pipeline for RAG system.

The data collection involves collecting all the data from knowledge base. The next step involved
cleaning the data which was read from pdfs. Each document consisted of some redundant
features like “troubleshooting guide” as header, URLs, page numbers and dates on footer, and at
the end of each document there was a table containing the editing history of the document
consisting of names of individuals who worked on it. This table was systematically removed. .
Following this, we standardized the text to lowercase, expunged non-ASCII characters, and
partitioned the documents into nodes of chunk size of 200 with a 10% overlap. Finally, these
nodes are saved in a vector database.

5. Software and Model

5.1 Classification

A tiny GPT-2 model was trained on custom classification dataset with the combined prompt
(Description of problem) as input and sent staff to room as the output label from the model.

Fig 6: Classification task

5.2 RAG

The RAG system’s architecture revolves around a series of key components: Vector store, Node
postprocessor, LLM (Large Language Model), and response synthesizer. Initially, nodes are stored
in a vector store and upon user query, relevant nodes are retrieved and post-processed. The
processed nodes, along with the query, go through a response synthesizer, where LLM generates
responses, forming the core framework depicted in Fig 7. The implementation of the RAG system
is realized using the Python programming language, and the LLM orchestration tool utilized is
‘llama-index.’

Fig 7. RAG system architecture

5.2.1 Vector Store and embedding model.

We used ChromaDB as our vector store. ChromaDB is an open-source AI based embedding
database. The chosen embedding model for this project is the 'bge-base-en-v1.5' model from the
BAAI [8]. This selection is based on its performance, as demonstrated on the MTEB leaderboard
[9], and considerations related to system memory.

5.2.2 Node Postprocessor.

Post-processing of retrieved nodes is crucial for refining responses. Within the framework of the
llama-index library [10], we deployed two distinct post-processing techniques:
SentenceEmbeddingOptimizer and SentenceTransformerRerank.

The former enhances token usage by eliminating irrelevant sentences based on query similarity,
retaining only the top relevant ones. This results in a refined set of nodes. The latter,
SentenceTransformerRerank, utilizes 'cross-encoder/ms-marco-MiniLM-L-12-v2' from the
'sentence-transformer' package [11] [12], reordering nodes for maximum relevance. These yield
processed nodes with removed non-relevant sentences and reordered for optimal relevance.

5.2.3 LLM and response synthesizer.

After the nodes are postprocessed, the query and nodes are then passed to the response
synthesizer. A response synthesizer is what generates a response from an LLM, using a user query
and a given set of text chunks/nodes. For the task of generating responses, our chosen LLM is the
llama2-7b-chat model [14]. We employed the 'tree-summarize' option from available methods
[13].

6. Quantitative and qualitative results

6.1 Classification

The tiny gpt-2 model performed well despite its size and gave training accuracy of around 85%
and validation accuracy around 73% as seen in Fig 8.

Fig 8: Training and Validation accuracy curves

The training loss exhibits a steady decrease over epochs, indicating that our model is effectively
learning from the training data. The model performs well on unseen data as well as seen in
validation loss curve shown in Fig 9.

Fig 9: Training and Validation loss curves

6.2 RAG

For the quantitative evaluation of RAG system, we decided to use human judgement on
relevancy. We ran a set of 20 different queries which gave classification results as zero (sending
staff to room not needed) and we independently decided if the answers are relevant or not. We
achieved an inter-rater agreement of 85%. Fig 10 is an example of retrieved answer from the RAG
system:

Fig 10. A sample output from RAG system.

7. Discussion and Learnings

Classification task gave intuitive results indicating that model learned well on the training data.
If there is a mention of “batteries” in the prompt the label sent staff to room is always 1, which
makes sense as it is clearly a delivery that will require in-person assistance. Also, if the prompt
contains the word “remotely” the output label is 0.

Our model also learned and gained knowledge about the TalkMaster specific applications such
as Crestron Fusion and X-Panel which was observed from the generated output.

8. Reflect

Attempting to use advanced RAG to include the classification task. This can be achieved by using
multiple indexes. Moreover, we can consider using more capabilities of an LLM in RAG such as
LLM re-rank, query transformation, and more post-processing on nodes.

9. Acknowledgement

We extend our sincere appreciation to Ian Swain and Natalie Wallace for graciously granting
permission to use Tech2U data, enhancing the depth of this project. A heartfelt thank you to
Professor Jonathan Rose for his invaluable guidance and support. We are also grateful to the TAs
Mohamed Abdelwahab and Jiading Zhu for their valuable insights and timely feedback.

References:

[1] Jurafsky, D., & Martin, J. H. (2019). Speech and Language Processing (3rd ed.).

[2] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. arXiv preprint
arXiv:1406.1078.

[3] Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate.
In International Conference on Learning Representations (ICLR).

[4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is
All You Need. In Advances in Neural Information Processing Systems (NeurIPS).

[5] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, "Language Models are Unsupervised Multitask
Learners," 2019.

[6] T. B. Brown et al., “Language Models are Few-Shot Learners,” 2020, doi: 10.48550/arxiv.2005.14165.

[7] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,” 2021, doi:
10.48550/arxiv.2005.11401.

[8] S. Xiao, Z. Liu, P. Zhang, and N. Muennighof, “C-Pack: Packaged Resources To Advance General Chinese
Embedding,” 2023, doi: 10.48550/arxiv.2309.07597.

[9] N. Muennighoff, N. Tazi, L. Magne, and N. Reimers, “MTEB: Massive Text Embedding Benchmark,” arXiv (Cornell
University), 2023, doi: 10.48550/arxiv.2210.07316.

[10]
https://docs.llamaindex.ai/en/stable/module_guides/querying/node_postprocessors/node_postprocessors.html#s
imilaritypostprocessor

[11] N. Reimers and I. Gurevych, “The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes,”
arXiv (Cornell University), 2021, doi: 10.48550/arxiv.2012.14210.

[12] https://www.sbert.net/docs/pretrained-models/ce-msmarco.html

[13] https://docs.llamaindex.ai/en/stable/module_guides/querying/response_synthesizers/root.html

[14] H. Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat Models,” 2023, doi:
10.48550/arxiv.2307.09288.

[15] A. Q. Jiang et al., “Mistral 7B,” 2023, doi: 10.48550/arxiv.2310.06825.

Individual Contributions
Ruchita Collection of daily TalkMaster data

 Cleaning data to retain required details only- room number, description
of problem.

 Labelling the 4442 entries in the data for label – sent staff to room
 Creating custom dataset for training with description of problem as

input and sent staff to room label as output
 Training the tiny-gpt2 model on the custom dataset.
 Analyzing classification results

Sammed Converting knowledgebase into pdf files (39 documents).
 Cleaning and chunking files and storing them in vector database.
 RAG system models selection
 Coding the RAG system.
 Analyzing the RAG system results.

Appendix :

GitHub repository: https://github.com/ece1786-2023/TalkMaster

Permissions:
Team Member Post Source code Post video Post final report
Ruchita Yes Yes Yes
Sammed Yes Yes Yes

Note: The data used for this project is private data of University of Toronto’s
Learning space management department. The data must not be posted publicly,
so we will delete the data files from repo, thus, data will not be displayed on
GitHub.

