
ThreatX Project Final Report
Xuehan Liu (1008401301) Wenxuan Zhang (1009230388)

ACKNOWLEDGEMENT
Word count: 1931
Compute penalty: 0%

INTRODUCTION
Cyber crimes are evolving, but thankfully, security experts are sharing their security insights online
through security posts to help protect the community. This shared information is invaluable for companies
to stay informed and for security analysts to keep up with latest cyber threats. Although there’s a huge
amount of security knowledge online, it’s usually scattered, unstructured and in various topics. To simplify
the task of extracting security knowledge, engineers tend to focus on specific threat signals, known as
indicators of compromise (IoCs) from each security post. However, getting these IoCs from posts isn’t
easy, and companies pay a lot to manually sort through them. Our project, ThreatX, is designed to leverage
Large Language Models (LLMs) to automatically detect IoCs from security reports, which could save
time and money. Our project starts with identifying 8 particular IoC types to cut down the scope. Table 1.
lists all 8 IoC types we handle with our model. Amongst all types, types like file path, IP address, and
URL are simpler to identify because they are structured and follow specific patterns, while the rest can be
tricky since they don’t have consistent patterns.

Table 1. IoC Types with Examples

BACKGROUND AND RELATED WORK
Indicators of Compromise (IoCs) are important in cybersecurity for detecting and responding to security
threats. Consequently, researchers use various techniques for collecting IoCs from open source security
references to identify patterns of malicious activity and take steps to prevent further attacks. Gao et al.
Gao et al. (2022) propose an advanced system. In their work, they utilized a method which combines
rules, neural networks, and convolutional neural networks for content processing. With the use of these
deep learning models, both accuracy and efficiency have been improved significantly. However, their
method struggles with novel, unseen threat patterns, and is less accurate with patterns with less training
data. Our proposed method overcomes these limitations by using Large Language Models (LLMs).
LLMs continually adapt to new cyber threats, making our approach more versatile in handling various
cybersecurity challenges.



DATA AND DATA PROCESSING
We’ve acquired a repository with over 17,000 latest security reports from 31 authorized vendors. To
simplify our project, we select 426 references from them, all in HTML format. Our raw data undergoes
a three-stage pre-processing phase: parsing, labeling, and formatting. The entire data flow process is
outlined in Figure 1.

Figure 1. Data Processing Flow

In the first step, we leverage a set of functions in Langchain for text parsing. We start by loading
a given reference document, then utilize BSHTMLparser to extract text content based on HTML tags,
converting it into plain text. Since there’s a limit on input length, we break this plain text into segments,
ensuring a preset overlap of tokens between these consecutive segments.

In the second step, we utilize the GPT API for data labeling. Each text segment is fed into GPT-4,
guided by the prompt outlined in Figure 2.

Figure 2. Five Components of Prompt to GPT-4

After we retrieve the response from GPT, we manually verify the accuracy of the extracted data. This
involves a quick review of the context provided by GPT around each IoC. Using our domain expertise, we
eliminate any inaccurately labeled data.

The last step involves the formatting of our input dataset in our own code. Each model requires a
unique data format, so we independently create a data formatter for each one. The specific format for
each model is detailed in the model section.

We evaluated 600 IoCs flagged by GPT-4, selecting 155 as our dataset. Figure 3 shows the distribution
of these data points across various labels. Notably, our dataset is imbalanced, with ’malware name’ being
the most common, while ’file path’ and ’IP’ are the least represented categories.

To ensure all labels are represented in both training and testing data, we use stratified sampling
to allocate 20% of the data points as a reserved test set for model evaluation. Figure 4 illustrates the
distribution of training and test data across all labels. Notably, categories like IP and field path have
limited data, which might impact the performance of the NER models.

2/8



Figure 3. Distribution of Data Points over Labels

Figure 4. Distribution of Data over Labels for Train/Test Set

ARCHITECTURE AND SOFTWARE
Figure 5 illustrates our system’s architecture, mainly comprising two components: a data parser and an
NER model. The process starts with obtaining the provided HTML file, which is then processed by the
same data parser mentioned in the data pre-processing stage. This file is then broken down into smaller
chunks for efficiency consideration. Each chunk is fed into our Threat Named Entity Recognition (NER)
model to extract specific types of IoCs. We employed three different NLP tools in our threat NER models,
balancing cost and performance.

Figure 5. System Data Flow

Baseline Model
We construct a custom NER model using spaCy v2.0 as our baseline model. This model incorporates a
deep convolutional neural network with residual connections, along with a transition-based approach for
named entity parsing. We choose it as a baseline model aiming at an optimal balance between efficiency,
accuracy, and adaptability.

3/8



Input data format Figure 6 shows a sample input for our baseline model. It includes a text chunk for
extraction and annotations of all IoCs identified in the text. Each annotation details the start and
end indices of the IoCs in the text, along with their label and IoC value.

Figure 6. Input Data for SpaCy Model

Experimental Setup And Outcome When training data is provided, it first undergoes tokenization by
spaCy’s tokenizer. Later, tokens are passed to the NLP training pipeline consisting of tok2vec
and NER. Tok2vec is crucial for converting tokens into vector representations, and NER and
classifies named entities in the text. The loss function for those components involve a combination
of cross-entropy loss and a localization loss.

Figure 7 demonstrates the training process for our baseline model. Notably, there’s fluctuation and
difficulty in optimizing the loss for both tok2vec and NER components, possibly due to insufficient
training data.

Figure 7. Training Pipeline of SpaCy Model

Llama 2
We leverage Llama-2-7b-chat as our pre-trained generative text model for completing our NER task. This
model has 7 to 70 billion parameters and is known to be optimized for dialogue use cases.

4/8



Input data format Llama 2 requires input data in a question prompt format, similar to ChatGPT. As
shown in Figure 8, the input for Llama 2 should clearly specify the type of IoCs to be extracted. It
must include the text from which the extraction is to be made, along with the correct answer. A key
aspect of this approach is that each extraction task focuses on only one type of IoC. Therefore, we
iterate through all IoC types to comprehensively extract various IoCs from the provided text.

Figure 8. Input data for Llama 2

Experimental Setup And Outcome While this pre-trained model has more than 7 billion parameters,
we can’t fine tune this model in full due to resource limitation. Therefore, we decided to use
QLoRA where Q stands for quantization of each parameter to be presented in 4 bit precision. LoRA
allows us to tweak just a small part of relevant input when it makes predictions, making the training
process quicker and less resource-intensive.

The learning curve in Figure 9 shows the model is learning as expected because both training and
testing loss decrease over the steps. The blue line represents the loss on the training data and it’s
going down, which means the model is getting better at predicting or fitting the training data as it
goes through more steps. The orange line is the loss on the testing data, which also generally trends
downwards, indicating the model is improving on new, unseen data as well.

Figure 9. Learning Curve of Llama 2

Distilbert
We use a lighter and faster LLM DistilBERT-base-uncased as the pre-trained model for our NER model in
a full fine-tune manner. DistilBERT-base-uncased is trained on a huge amount of text and is great for
understanding the meaning of sentences and words in tasks like translation, question-answering. It is a
smaller model compared to Llama 2.

5/8



Input data format The Distilbert model uses the BIO (Begin-Inside-Outside) format for data to train
effectively. In this format, every word or punctuation is a token with a specific label. Non-IoC
elements are marked as 0. An IoC at the start of a sentence or following a non-IoC token (labeled
0) is labeled as B-label name. If it follows another IoC token (non-0), it is labelled as I-label name.
This format helps Distilbert to recognize IoCs in text, as illustrated in Figure 10.

Figure 10. Input Data of Distilbert Model

Experimental Setup And Outcome The Distilbert model initially focuses on identifying one specific
type of IoC in the early epochs (in Figure 11), gradually broadening its scope with progression.
For example, by epoch 2, it specializes in recognizing DOMAIN NAME, and by epoch 5, it also
starts to identify MALWARE NAME and IP. The performance of Distilbert, detailed in the results
comparison section, is based on evaluations conducted after 50 epochs.

Figure 11. Number of label learned of Distilbert

OBSERVATIONS AND DISCUSSIONS
Quantitative Results
Table 2 presents the quantitative results of three models across eight IoC categories, focusing on precision
and recall. The Llama model excels in identifying all IoC categories, achieving 100% precision in actor,
file path, hash value, and IP, and 50% in its weakest area, URL prediction. The distilbert model shows
strength in most categories, particularly with 78% precision in IP, but struggles with file path IoCs. In
contrast, spaCy is limited to the malware name category, reaching 50% accuracy, and underperforms in
other IoC categories, indicating its comparative limitations against Llama and distilbert.

6/8



Table 2. Quantitative Results of Three Model

Qualitative Results
Table 3 is an example of qualitative results, The table compares the performance of three models—spaCy,
Llama, and distilbert—in extracting malware names from text. All models successfully identified the
malware name ”TROJ DROPPER.HXK” as an IoC (Indicator of Compromise). spaCy and Llama
provided the correct label ”MALWARE” without specifying the position in the text. distilbert also
correctly identified the malware name, but additionally specified its position with a ”B-” prefix, indicating
the beginning of the entity, aligning with the BIO (Begin-Inside-Outside) tagging format used in NER
(Named Entity Recognition). This demonstrates that each model is capable of accurately extracting
malware names, with distilbert providing more detailed positional information.

Table 3. Qualitative Results of Three Model

Discussion And Learning
The mentioned results show that Llama outperforms distilbert, with spaCy being the least effective.
Conclusively for our task, larger models tend to perform better with the same data. However, all models
have difficulty differentiating between domain names and URLs due to the similarity between those
two types and inaccurate labeling may also contribute to the noise for this category. This confusion is
particularly notable when using chat-GPT4 for labeling, which can lead to undetected errors and dataset
contamination. Additionally, despite GEO LOCATION being a common category, the models often
incorrectly extract all geo-locations instead of just the one relevant to the attacks, which is our primary
interest. This project highlights several important lessons. First, the training data’s format is crucial,
different models require different formats of input data, and data format can impact model training
effectiveness. Second, the extraction cannot perfectly align with human intention. Such as identifying all
geographic locations instead of just the attack’s related. Lastly, the project’s success is highly dependent
on data quality and quantity. Limited data is a major factor in model performance and evaluation.

INDIVIDUAL CONTRIBUTIONS
Xuehan Liu in the following table 4 is addressed by Liu and Wenxuan Zhang is addressed by Zhang.
Though not mentioned in report, but UI is implemented with reference of https://github.com/ece1786-
2023/ThreatX/blob/main/1786gradioProj.ipynb

7/8



Item Assignee
Raw Data Acquisition Liu
Data Labelling Liu
Data Formatting Zhang
Baseline Model Liu And Zhang
Fine-tune Model - Llama Liu
Fine-tune Model - distilBert Zhang
Gradio UI Zhang

Table 4. Project contribution.

Member Post Video? Post Report? Post Code?
Xuehan Liu No Yes Yes

WenXuan Zhang Yes Yes Yes

Table 5. Project permission.

PERMISSIONS

REFERENCES
Gao, P., Liu, X., Choi, E., Ma, S., Yang, X., Ji, Z., Zhang, Z., and Song, D. (2022). Threatkg: A threat

knowledge graph for automated open-source cyber threat intelligence gathering and management. arXiv
preprint arXiv:2212.10388.

8/8


