ECE1786 Fall 2024 Assignment 1

Assignment 1:
Word Embeddings - Properties, Meaning and Training

Welcome to the first assignment of ECE 1786! This assignment engages you in the first major
topic of the course - the properties, meaning, viewing, and training of word embeddings (also called
word vectors). This assignment must be done individually. The specific learning objectives in this
assignment are:

1. To set up the computing environment used in this course.
2. To learn word embedding properties, and use them in simple ways.
3. To translate vectors into understandable categories of meaning.

4. To understand how embeddings are created, using two methods - the Skip Gram method,
and the Skip Gram with Negative Sampling (SGNS) method, and to get a sense of trade-offs
in the creation of embeddings.

Deadline: Monday, September 23, 2024 at 9:00pm

Late Penalty: There is a penalty-free grace period of one hour past the deadline. Any work that
is submitted between 1 hour and 24 hours past the deadline will receive a 20% grade deduction.
No other late work is accepted.

Note: Please see the rules regarding the use of generative AI (the subject of this course!) in
the Syllabus of this course on Querucs. The short version is that you must indicate (cite) which, if
any, of your code was created by generative Al, and if more than a small amount is done that way,
it will be considered an academic offense.

What To Submit

You should submit the following to the Quercus website for this course, under Assignment 1:

1. A single PDF document, called Assign1.pdf which answers every question posed in Sections
1 through 4 of this assignment. You should number your answer to each question in the form
Question X.Y, where X is the section of this assignment, and Y is the numbered element in
the question. You should include the specific written question itself and then provide
your answer. Grades will be deducted if this format is not followed.

2. You should submit separate code files for the code that you wrote for each section, as specified
in each section, with the specified file name. For example, Section 1 Part 2 asks you to submit
a python (text) file named A1P1_2.py. Note that you're required to submit python files, not
notebook (.ipynb)files.

Before You Begin: Set Up Your Computing Environment

Set up your computing environment according to the document Course Software Infrastruc-
ture and Background provided with this assignment. Note that the pre-requisite of this course
requires that you have experience and knowledge of software systems like (or exactly the same) as
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described in that document. Fall 2024 Note: It seems that the torchtext library is having trouble
working on Google Colab, and so for Sections 1 and 2 you should install the software locally on
your own computer. Section 3 and 4 should work on Colab.

1 Properties of Word Embeddings [15 points]

For this section, you should download the Pytorch and Torchtext environment onto
your own computer, as noted above. In the first lecture of this course, we discuss properties of
word embeddings/vectors, and use a PyTorch notebook to explore some of their properties. You can
retrieve that code in notebook provided with this assignment called A1_Sectionl_starter.ipynb.
It illustrates the basic properties of the GloVe embeddings [1]. As a way to gain familiarity with
word vectors, do each of the following:

1. Read the documentation of the Vocab class of Torchtext that you can find here: https://
torchtext.readthedocs.io/en/latest /vocab.html and then read the A1_Sectionl_starter.ipynb
code. Run the notebook and make sure you understand what each step does.

2. Write a new function, similar to print_closest_words called print_closest_cosine_words
that prints out the N-most (where N is a parameter) similar words using cosine similarity
rather than euclidean distance. Provide a table that compares the 5-most cosine-similar
words to the word ‘dog’, in order, alongside to the 10 closest words computed using euclidean
distance. Give the same kind of table for the word ‘computer.” Looking at the two lists,
does one of the metrics (cosine similarity or euclidean distance) seem to be better than the
other? Explain your answer. Submit the specific code for the print_closest_cosine_words
function that you wrote in a separate Python file named A1P1_2.py. [2 points]

3. The section of Al_Sectionl_starter.ipynb that is labelled Analogies shows how relation-
ships between pairs of words is captured in the learned word vectors. Consider, now, the
word-pair relationships given in Figure 1 below, which comes from Table 1 of the Mikolov[?]
paper. Choose one of these relationships, but not one of the ones already shown in the starter
notebook, and report which one you chose. Write and run code that will generate the second
word given the first word. Generate 10 more examples of that same relationship from 10
other words, and comment on the quality of the results. Submit the specific code that you
wrote in a separate Python file, A1P1_3.py. [4 points]

4. The section of A1_Sectionl_starter.ipynb that is labelled Bias in Word Vectors illus-
trates examples of bias within word vectors in the notebook, as also discussed in class. Choose
a context that you're aware of (different from those already in the notebook), and see if you
can find evidence of a bias that is built into the word vectors. Report the evidence and the
conclusion you make from the evidence. [2 points]

5. Change the embedding dimension (also called the vector size) from 50 to 300 and re-run
the notebook including the new cosine similarity function from part 2 above. How does the
euclidean difference change between the various words in the notebook when switching from
d=50 to d=3007 How does the cosine similarity change? Does the ordering of nearness
change? Is it clear that the larger size vectors give better results - why or why not? [5 points]


https://torchtext.readthedocs.io/en/latest/vocab.html
https://torchtext.readthedocs.io/en/latest/vocab.html
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6. There are many different pre-trained embeddings available, including one that tokenizes
words at a sub-word level[3] called FastText. These pre-trained embeddedings are available
from Torchtext. Modify the notebook to use the FastText embeddings. State any changes
that you see in the Bias section of the notebook. [2 points]

Table 1: Examples of five types of semantic and nine types of syntactic guestions in the Semanific-
Syntactic Word Relationship test set.

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Mlinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

Figure 1: Mikolov’s Pairwise Relationships

2 Computing Meaning From Word Embeddings [12 points]

For this section, you should download the Pytorch and Torchtext environment onto your own com-
puter, as noted above. Now that we’ve seen some of the power of word embeddings, we can also feel
the frustration that the individual elements/numbers in each word vector do not have a meaning
that can be interpreted or understood by humans. It would have preferable that each position in
the vector correspond to a specific azis of meaning that we can understand based on our ability to
comprehend language. For example the “amount” that the word relates to colour or temperature
or politics. This is not the case, because the numbers are the result of an optimization process that
does not drive each vector element toward human-understandable meaning.

We can, however, make use of the methods shown in Section 1 above to measure the amount of
meaning in specific categories of our choosing, such as colour. Suppose that we want to know how
much a particular word/embedding relates to colour. One way to measure colour could be to de-
termine the cosine similarity between the word embedding for colour and the word of interest. We
might expect that a word like ‘sky’ or ‘grass’ might have elements of colour in it, and that ‘purple’
would have more. However, it may also be true that there are multiple meanings to a single word,
such as ‘colour’, and so it might be better to define a category of meaning by using several words
that, all together, define it with more precision.

For example, a way to define a category such as colour would be to use that word itself, and to-
gether with several examples, such ‘red’, ‘green’; ‘blue’, ‘yellow.” Then, to measure the “amount”
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sun moon | winter
rain | cow wrist
wind | prefix | ghost
glow | heated | cool

Table 1: Vocabulary to Test in Section 2

of colour in a specific word (like ‘sky’) you could compute the average cosine similarity between
sky and each of the words in the category. Alternatively, you could average the vectors of all
the words in the category, and compute the cosine similarity between the embedding of sky and
that average embedding. In this section, use the d=50 GloVe embeddings that you used in Section 1.

Do the following:
1. Write a PyTorch-based function called compare_words_to_category that takes as input:

e The meaning category given by a set of words (as discussed above) that describe the
category, and

e A given word to ‘measure’ against that category.

The function should compute the cosine similarity of the given word in the category in two
ways:

(a) By averaging the cosine similarity of the given word with every word in the category,
and

(b) By computing the cosine similarity of the word with the average of the embeddings of
all of the words in the category.

Submit the specific code that you wrote in a separate Python file, A1P2_1.py. [2 points]

2. Let’s define the colour meaning category using these words: “colour”, “red”, “green”, “blue”,
“yellow.” Compute the similarity (using both methods (a) and (b) above) for each of these
words: “greenhouse”, “sky”, “grass”, “azure”, “scissors”, “microphone”, “president” and
present them in a table. Do the results for each method make sense? Why or why not? What
is the apparent difference between method 1 and 2?7 [4 points]

3. Create a similar table for the meaning category temperature by defining your own set of
category words, and test a set of 10 words that illustrate how well your category works as
a way to determine how much temperature is “in” the words. You should explore different
choices and try to make this succeed as much as possible. Comment on how well your approach
worked. [4 points]

4. Use these two categories (colour & temperature) to create a new word vector (of dimension
2) for each of the words given in Table 1, in the following way: for each word, take its (colour,
temperature) cosine similarity numbers (try both methods and see which works better), and
apply the softmax function to convert those numbers into a probabilities. Plot each of the
words in two dimensions (one for colour and one for temperature) using matplotlib. Do the
words that are similar end up being plotted close together? Why or why not? [2 points]
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3 Training A Word Embedding Using the Skip-Gram Method on
a Small Corpus [16 points|

For this section, you can use either your own computer, or Google Colab, as noted above. In
lecture 2, we described the Skip Gram method of training word embeddings [2]. In this Section
you are going to write code to use that method to train a very small embedding, for a very small
vocabulary on very small corpus of text. The goal is to gain some insight into the general notion
of how embeddings are produced in a neural net training context. The corpus you are going to use
was provided with this assignment, in the file SmallSimpleCorpus.txt.

Your task is to write complete code (given some starter code) to train, test and display the trained
embeddings, using the skip gram method. (In Section 4 you'll use a different, more efficient method).

You can find the starter code in the provided file A1_Section3_starter.ipynb.

1. First, read the file SmallSimpleCorpus.txt so that you see what the sequence of sentences
is. Recalling the notion “you shall know a word by the company it keeps,” find three pairs
of words that this corpora implies have similar or related meanings. For example, ‘he’ and
‘she’ are one such example — which you cannot use in your answer! [1 point]

2. The prepare_texts function in the starter code is given to you and fulfills several key func-
tions in text processing, a little bit simplified for this simple corpus. Rather than full tokeniza-
tion (covered in Section 4 below, you will only lemmatize the corpus, which means converting
words to their root - for example the word “holds” becomes “hold”, whereas the word “hold”
itself stays the same (see the Jurafsky [1] text, section 2.6 for a discussion of lemmatization).
The prepare_texts function performs lemmatization using the spaCy library, which also per-
forms parts of speech tagging. That tagging determines the type of each word such as noun,
verb, or adjective, as well as detecting spaces and punctuation. Jurafsky [1] Section 17.1 and
17.2 describes parts-of-speech tagging. The function prepare_texts uses the parts-of-speech
tag to eliminate spaces and punctuation from the vocabulary that is being trained.

Review the code of prepare_texts to make sure you understand what it is doing. Write
the code to read the corpus SmallSimpleCorpus.txt, and run the prepare_texts on it to
return the text (lemmas) that will be used next. Check that the vocabulary size is 11. Which
is the most frequent word in the corpus, and the least frequent word? What purpose do the
v2i and i2v functions serve? [2 points]

3. Write a new function called tokenize_and_preprocess_text the skeleton of which is given
in the starter code, but not written. It takes the lemmatized small corpus as input, along
with v2i (which serves as a simple, lemma-based tokenizer) and a window size window. You
should write it so that its output should be the Skip Gram training dataset for this corpus:
pairs of words in the corpus that “belong” together, in the Skip Gram sense. That is, for
every word in the corpus a set of training examples are generated with that word serving as
the (target) input to the predictor, and all the words that fit within a window of size window
surrounding the word would be predicted to be in the “context” of the given word. The words
are expressed as tokens (numbers). To be clear, this definition of window means that only
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odd numbers of 3 or greater make sense. A window size of 3 means that there are maximum
2 samples per target word, using the one word before and the one word after.

For example, if the corpus contained the sequence then the brown cow said moo, and if
the current focus word was cow, and the window size was window=3, then there would be
two training examples generated for that focus word: (cow, brown) and (cow, said). You
must generate all training examples across all words in the corpus within a window of size
window. Test that your function works, and show with examples of output (submitted) that
it does. [2 points]

4. Next you should define the model to be trained, the skeleton for which is give in the starter
code class Word2vecModel. Portions of the weights in this model, once trained, provides the
trained embeddings we are seeking. Recall that the input to the model is a token (a number)
representing which word in the vocabulary is being predicted from. The output of the model
is of size |V|, where |V]| is the size of the vocabulary set V, and each individual output in
some sense represents the probability of that word being the correct output. That prediction
is based directly on the embedding for each word, and the embeddings are quantities being
determined during training. Set the embedding size to be 2, so that will be the size of
our word embeddings/vectors. What is the total number of parameters in this model with
an embedding size of 2 - counting all the weights and biases? Submit your code for the
Word2VecModel class in the file A1IP3_4.py. [2 points]

5. Write the training loop function, given in skeleton form in the starter code as function
train_word2vec. It should call the function tokenize_and_preprocess_text to obtain
the data and labels, and split that data to be 80% training and 20% validation data. It
should use a Cross Entropy loss function, a batch size of 4, a window size of 5, and 50 Epochs
of training. Using the default Adam optimizer, find a suitable learning rate, and report what
that is. Show the training and validation curves (loss vs. Epoch), and comment on the ap-
parent success (or lack thereof) that these curves suggest. Submit your code for the training
function train_word2vec in the file A1P3_5.py [4 points]

6. For your best learning rate, display each of the embeddings in a 2-dimensional plot using
Matplotlib. Display both a point for each word, and the word itself. Submit this plot, and
answer this question: Do the results make sense, and confirm your choices from part 1 of
this Section? What would happen when the window size is too large? At what value would
window become too large for this corpus? [5 points]

7. Run the training sequence twice - and observe whether the results are identical or not. Then
set the random seeds that are used in, separately in numpy and torch as follows (use any
number you wish, not necessary 43, for the seed):

np.random. seed (43)
torch.manual_seed(43)

Verify (and confirm this in your report) that the results are always the same every time you
run your code if you set these two seeds. This will be important to remember when you are
debugging code, and you want it to produce the same result each time.
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4 Skip-gram with Negative Sampling [14 points 4+ 2 bonus points]

For this section, you can use either your own computer, or Google Colab, as noted
above. One big issue with the pure skip gram training method presented in the Section 3 is
that it is quite slow, largely because the output of the model is the size of the vocabulary, and
normal vocabularies are in the range of 5,000 or more words. An alternative is called skip gram
with negative sampling, or SGNS for short. Here, rather than predict one word that is contextually
associated with another, we build a binary predictor that says whether two words belong together
as part of the same context. To make such a binary predictor, the training data has to con-
tain both positive examples (as in Section 3) and negative examples, hence the ‘negative sampling’
in the SGNS name. Section 6.8 of the Jurafsky text [1] gives a detailed description of this approach.

The goal in this Section to gain more understanding into how embeddings are made, using a larger
embedding size and a much larger corpus, with a much larger vocabulary. The corpus you are going
to use was provided with this assignment, in the file LargerCorpus.txt. It comes from a book
called “Ilustrated History of the United States Mint.” We note that if you tried to train a word
embedding of reasonable size on this corpus, using the method of Section 3, it would be very slow!

Starter code is provided in the file A1_Section4_starter.ipynb.

1. Take a quick look through LargerCorpus.txt to get a sense of what it is about. Give a 3
sentence summary of the subject of the document. [1 point]

2. The prepare_texts function in the starter code is a more advanced version of that same
function given in Section 3. Read through it and make sure you understand what it does.
What are the functional differences between this code and that of the same function in
Section 37 [1 point]

3. Write the code to read in LargerCorpus.txt and run prepare_texts on it. Determine the
number of words in the text, and the size of the filtered vocabulary, and the most frequent
20 words in the filtered vocabulary, and report those. Of those top 20 most frequent words,
which one(s) are unique to the subject of this particular text? [1 point]

4. Write the function tokenize_and_preprocess_text which generates both positive and neg-
ative samples for training in the following way: first, use w2i to create a tokenized version of
the corpus. Next, for every word in the corpus, generate: a set of positive examples within a
window of size window similar to the example generation in Section 3. Set the label for each
positive example to be +1, in the list Y produced by the function. Also, for each word, gen-
erate the same number of negative samples as positive examples, by choosing that number of
randomly-chosen words from the entire corpus. (You can assume randomly chosen words are
very likely to be not associated with the given word). Set the label of the negative examples
to be -1. Submit your code for this function in the file named A1P4_4.py. How many total
examples were created? [2 points]

5. OPTIONAL: The training can be made more efficient by reducing the number of examples
for the most frequent words, as the above method creates far more examples connected to
those words than are necessary for successful training. Revise your function to reduce the
number of examples. Submit your code for this function in the file named A1P4_5.py, and
state how many examples remain for the corpus using this reduction. [2 bonus points]
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6. Write the model class, from the given skeleton class SkipGramNegativeSampling. The
model’s input are the tokens of two words, the word and the context. The model stores
the embedding that is being trained (just one embedding per token), which is set up in the
_init_ method. The output of the forward function is a binary prediction, but it should
only compute the raw prediction of the network (which is the dot product of the the two
embeddings of the input tokens). Submit your model class in the file A1P4_6.py. [2 points]

7. Write the training function, given in skeleton form in the starter code as the function
train_sgns. This function should call the tokenize_and_preprocess_text function to
obtain the data and labels, and split that data to be 80% training and 20% validation
data. It should use an embedding size of 8, a window size of 5, a batch size of 4, and
30 Epochs of training. The loss function should be log(o(prediction)) for positive examples,
and log(o(—prediction)) where o is the sigmoid function. Since it is possible for the predic-
tion to be 0, to prevent the log function from having an infinite result, we typically add a
small constant the output of the sigmoid to prevent this - typically 1e-5.

Using the default Adam optimizer, find a suitable learning rate, and report what that is.
Show the training and validation curves vs. Epoch, and comment on the apparent success (or
lack thereof) that these curves suggest. Submit your training function in the file A1P4_7.py.
[4 points]

8. Write a function that reduces the dimensionality of the embeddings from 8 to 2, using principle
component analysis (PCA) as shown in the partially-written function visualize_embedding.
Since we cannot visualize the embeddings of the entire vocabulary, the function is written to
select a range of the most frequent words in the vocabulary. (Too frequent are not interesting,
but too infrequent are also less interesting). Comment on how well the embeddings worked,
finding two examples each of embeddings that appear correctly placed in the plot, and two
examples where they are not. [3 points]
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