
ECE1786 Fall 2024 Assignment 2

Assignment 2:
Subjective/Objective Sentence Classification Using MLP and

CNN

Deadline: Monday, October 7, 2024 at 9:00pm
Late Penalty: There is a penalty-free grace period of one hour past the deadline. Any work that
is submitted between 1 hour and 24 hours past the deadline will receive a 20% grade deduction.
No other late work is accepted.

This assignment must be done individually. You can find the mark associated with each major
section. You will be marked based on the correctness of your implementation, your results, and
your answers to the required questions in each section.

Learning Objectives

In this assignment you will:

1. Make use of pre-trained word vectors as a basis for classifying text

2. Implement an Multi-Layer Perceptron (well, a very small one!) and a Convolutional Neural
Network architecture for text classification. You’ll explore some relevant hyperparameters,
and look at the resulting trained features for insights.

3. Practice doing qualitative analysis of results.

4. Explore quantitative methods to explain the results.

5. Build an interactive application using Gradio https://gradio.app.

What To Submit

You should hand in the following files:

• A PDF file assignment2.pdf containing answers to the written questions in this assignment.
You should number your answer to each question in the form Question X.Y.Z, where X is
the section of this assignment, Y is the subsection, and Z is the numbered element in the
question. You should include the specific written question itself and then provide
your answer. Grades will be deducted if this format is not followed.

• You should submit separate code and model files for the code and models that you wrote as
specified in Sections 4.8, 5.4 and 6.2.

1 Subjective/Objective Classification Problem Definition

The first lectures of this course, and the first assignment showed how textual words can be turned
into word vectors that represent the meaning of a word. These form the basis of all forms of mod-
ern deep-learning based NLP. In this assignment we will build models that classify a sentence as
objective (a statement of fact) or subjective (a statement based on opinion). To begin, make sure
you understand the distinction between these two words - look up a few definitions of these words,
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when used as adjectives.

We will make use of word vectors that have already been created (as you now know, trained), and
use them as the basis for the two classifiers that you will build.

As in Assignment 1, each word (or portion of a word) is first tokenized, where the word is converted
into an identifying number. This number is referred to either as the word’s index or as the word
token. With this index, the word vector corresponding to the word can be retrieved from a lookup
table, which is referred to as the embedding matrix.

In this assignment, your code will pass these indices into two different neural network models to
achieve the classification of a sentence – that it is subjective or objective – as illustrated below:

Tokenize"The fight scenes are fun" 4 427 453 32 249 NN 
Model 0.9

Text Sentence Discrete tokens
Output

Probability  
(Subjective)

Figure 1: High Level diagram of the Assignment 2 Classifiers for Subjective/Objective

Note: the first ‘layer’ of the neural network model will actually be the step that converts the
index/token into a word vector. (This could have been done on all of the training examples, but
that would greatly increase the amount of memory required to store the examples). From the first
layer on, the neural network deals only with the word embeddings/vectors.

2 Software Environment and Dataset

2.1 Software Environment

The software environment you’ll be using in this assignment is the same as that used in Assignment
1, including PyTorch, torchtext and SpaCy. The document given as part of Assignment 1,
“Course Software Infrastructure and Background” tells you what to use and install.

2.2 Dataset

We will use the Subjectivity dataset [2], introduced in the paper by Pang and Lee [5]. The data
comes from portions of movie reviews from the Rotten Tomatoes website [3] (which are assumed
all be subjective) and summaries of the plot of movies from the Internet Movie Database (IMDB)
[1] (which are assumed all be objective). This approach to labeling the training data as objective
and subjective may not be strictly correct, but will work for our purposes. Note that some of
these sentences may be labelled incorrectly, and discovering those incorrect labels is part of this
assignment.
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3 Preparing the data (5 points)

3.1 Human Data Review

The data for this assignment was provided in the file data.tsv that you downloaded from Quercus.
This is a tab-separated-value (TSV) file that contains two columns, text and label. The text

column contains a text string (including punctuation) for each sentence (or fragment or multiple
sentences) that is a data sample. The label column contains a binary value {0,1}, where 0 repre-
sents the objective class and 1 represents the subjective class.

Do/answer each of the following questions:

1. Review the data to see how it is organized in the file. How many examples are in the file
data.tsv?

2. Select two random examples each from the positive set (subjective) and two from the negative
set. For all four examples, explain, in English, why it has the given label. [1 point]

3. Find one example from each of the positive and negative sets that you think has the incorrect
label, and explain why each is wrong [2 points].

3.2 Create train/validation/test splits and Overfit Dataset

You will need to divide the available data into three main datasets: training, validation and test
(make sure you know why all model training needs three datasets, and not 2!). You can use
train_test_split from the sklearn library (or some other splitter if you prefer) to split the
data.tsv into 3 files:

1. train.tsv: this file should contain 64% of the total data

2. validation.tsv: this file should contain 16% of the total data

3. test.tsv: this file should contain 20% of the total data

Finally, create a fourth dataset, called overfit.tsv also with equal class representation, that con-
tains only 50 training examples for use in debugging, as discussed in Section 4.4 below. This dataset
will be used separately from the other three, so it can overlap with those datasets.

You should (programmatically) verify that there are equal number of examples in the two classes
in each of the datasets, and that you did not accidentally put the same sample in more than one of
the training, validation and test sets. Your code should report both of these checks. Submit your
code to perform these functions in the file A2P3_2.py. [2 points]

3.3 Processing the Training Data

We have provided starter code that processes the training, validation and test data for you, once
it has been split into the files described above. It can be found in the A2_Starter.py given
with this assignment. It uses the Pytorch DataLoader class to process the input data in this
assignment, as described in this tutorial. The code described below is present in the skeleton code
file A2_Starter.py. Read this section together with the code, and make sure you understand what
the code is doing.
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1. The torchtext.vocab loads the GloVe vectors, in a manner similar to Assignment 1.

glove = torchtext.vocab.GloVe(name="6B", dim=args.emb_dim)

This loads word vectors into a GloVe class (see documentation https://torchtext.readthedocs.
io/en/latest/vocab.html#torchtext.vocab.GloVe) This GloVe model was trained with
six billion words to produce a word vector size of 100, as described in class. This will down-
load a rather large 862 MB zip file into the folder named .vector cache, which might
take some time; this file expands into a 3.3Gbyte set of files, but you will only need one of
those files, labelled glove.6B.100d.txt, and so you can delete the rest (but don’t delete the
file glove.6B.100d.txt.pt that will be created by A2_Starter.py, which is the binary form
of the vectors). Note that .vector cache folder, because it starts with a ‘.’, is typically
not a visible folder, and you’ll have to make it visible with an operating system-specific view
command of some kind. (Windows, Mac) Once downloaded your code can now access the
vocabulary object within the text field object by calling .vocab attribute on the text field
object.

The glove object contains the index (also called word token) for most words in the data set.
For those words that do not occur in GloVe’s vocabulary range, we substitute it for the last
word in the vocabulary.

2. Next, the code below (also given in the starter code) loads the training, validation, and test
datasets to become TextDataset objects, a class extending the Pytorch Dataset class. This
method is designed specifically for text input. A2_Starter.py uses the following code, which
assumes that the tsv files are in the folder data:

train_dataset = TextDataset(glove, "train")

val_dataset = TextDataset(glove, "validation")

test_dataset = TextDataset(glove, "test")

Additional details on the Pytorch Dataset class can be found at: https://pytorch.org/

tutorials/beginner/basics/data_tutorial.html Later, in Section 4.4 you’ll also need to
use the “overfit” dataset you created in Section 3.2.

3. Next, we need to create a DataLoader object that can be enumerated (Python-style) in the
training loop. The objects in each batch is specified by the “collate function”, collate fn.
This code is given to you in the starter code, A2 Starter.py. (You can review data load-
ing in the Pytorch documentation to learn more about the DataLoader, and the function
collate fn, but the code is given to you.)

These DataLoaders are iterable objects that will produce the batches of batch_size samples
in each training inner loop step. In the given implementation of the collate function, a tuple
of two elements will be returned in each batch: An integer torch.tensor of size [length x
batch size], and a float torch.tensor of size [batch size].

Recall that, for the CNN model, the input strings of a given batch should all be of the
same length, and so shorter strings are padded with zeroes. The collate function returns a
tokenized and padded batch of text. Tokenization is done simply by splitting into words using
whitespace, and looking up the token using vocab.stoi.get.
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4 Baseline Model and Training (10 points)

Using the above starter code, design and train the baseline model described below.

4.1 Embedding Layer

As mentioned in Section 1, we will make use of word vectors that have already been created/trained.
We will use the GloVe [6] pre-trained word vectors as an embedding matrix. The step that converts
the input words from an index number (the word token) into the word vector is usually done inside
the nn.Module model class. So, when defining the layers in your model class, you must add a layer
with the function nn.Embedding.from pretrained, and pass in vocab.vectors as the argument
where vocab is the Vocab object.

self.embedding = nn.Embedding.from_pretrained(vocab.vectors)

There is an optional argument, ‘freeze‘ (default=True) in the ‘from pretrained‘ method. When
set to False, the embedding vectors themselves are trained together with the model’s parameters.
This is an important notion that sometimes takes some time to get used to - that the inputs
presented to a neural net are themselves learned or updated through back propagation/gradient
descent. We will make use of this feature later, in Section 5.2. More detail can be found here:
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html.

4.2 Baseline Model

0.9
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Figure 2: A simple baseline architecture
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The baseline model was discussed in class and is illustrated in Figure 2. It first converts each of
the word tokens into a vector using the GloVe word embeddings. It then computes the average of
the word embeddings in the input sentence. The notion is that this average becomes the “average
meaning” of the entire sentence. This is fed to a fully connected layer which produces a scalar
output with sigmoid activation (which should be computed inside the BCEWithLogitsLoss losss
function) to represent the probability that the sentence is in the subjective class.

4.3 Training the Baseline Model

Using the A2 Starter.py code, write a training loop to iterate through the training dataset and
train the baseline model. Use the hyperparameters given in Table 1, but find a suitable batch size.

Hyperparameter Value

Optimizer Adam
Learning Rate 0.001

Number of Epochs 50
Loss Function BCEWithLogitsLoss()

Table 1: Hyperparameters to Use in Training the Models

4.4 Overfitting to debug

One very useful way to debug your model is to see if you can overfit your model and reach a much
higher training accuracy than validation accuracy. Use the overfit.tsv file that you created ear-
lier to do this. The purpose of doing this is to be able to make sure that the input processing
and output measurement is working. You will need more than 25 epochs to succeed in overfitting.
(Note that it is hard to overfit the baseline model to get an accuracy of 100% because it doesn’t
have that many parameters; the CNN model in the next section will have enough to reach 100%).
So, do not proceed into the next sections until you have some overfitting, because it will be harder
to debug with more data, and whatever the problem is can more easily be found here (such as
mislabelled data, or errors in the data handling).

It is also recommended that you include some useful logging in the loop to help you keep track of
progress, and help in debugging.

Provide the training loss and accuracy plot for the overfit data in your Report. [1 point]

4.5 Full Training Data

Now you should use the full training dataset to train your model, using the hyperparameters given
in Table 1. Although this model will get better with more epochs, 50 epochs is enough to illustrate
what it is doing.

Using your A2 Starter.py code (in notebook or raw python form) write an evaluation loop to
iterate through the validation dataset to evaluate your model. We recommend that you call the
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evaluation function in the training loop (perhaps every epoch or two) to make sure your model isn’t
overfitting. Keep in mind if you call the evaluation function too often, it will slow down training.
Give the training and validation loss and accuracy curves vs. epoch in your report, and report
the final test accuracy. Evaluate the test data and provide the accuracy result in your report.

Answer this questions: In the baseline model, what information contained in the original sentence
is being ignored? [1 points]

4.6 Extracting Meaning from the Trained Parameters

The dimension of the parameters in the linear neuron is the same size as the word embedding,
which suggests that there is a meaning attributable to the learned parameters. You can explore
that meaning using the function print_closest_cosine_words from Assignment 1. Use that
function to determine the 20 closest words to those trained parameters of the neuron. You should
see some words that make it clear what the classifier is doing. Do some of the words that you
generated make sense? Explain. [4 points]

4.7 Saving and loading your model

Your trained model will be used later, in Section 6. You should save the parameters of your trained
model with the lowest validation error using torch.save(model.state dict(), ’model baseline.pt’).
See https://pytorch.org/tutorials/beginner/saving_loading_models.html for detail on sav-
ing and loading PyTorch networks.

4.8 Submit Baseline Code

Submit your full code for this section in either in a notebook file named A2_Baseline.ipynb or in
a zip file containing all your python files named A2_Baseline.zip. Your code should clearly state
how it should be run, and it should have easy-to-use arguments that allow any part of this Section
to be run. [4 points]
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5 Convolutional Neural Network (CNN) Classifier (15 points)

Embedding Dim

 
 

Vector/Embedding

0.9

Fully Connected

The fight scenes are  fun

4 427 453 32 249

Prediction

Max-pooling
over outputs 
from each kernel

 Convolutional
 Layers with
different filter width

Figure 3: A convolutional neural network architecture

The second architecture, described in class and illustrated in Figure 3, is to use a CNN-based
architecture that is inspired by Yoon et al. [4]. Yoon first proposed using CNNs in the context of
NLP. You will write the code for the CNN model class from the following specifications:

1. Group together all the vectors of the words in a sentence to form a embedding dim * N

matrix. Here N is the number of words (and therefore tokens) in the sentence. Different
sentences will have different lengths, but the batch loading function pads each sentence in a
batch with zeroes to make them all the same length. Note that embedding dim is the size of
the word vector, 100.

2. The architecture consists of two convolutional layers that both operate on the word vector
group created above, but with different kernel sizes. The kernel sizes are [ki, embedding dim].
You should write your code to allow for the parameterization of k1 and k2 as well as the num-
ber of kernels n1 and n2. Note that this organization of convolutional layers is different from
traditional computer vision-oriented CNNs in which one layer is fed into the next; these layers
are operating on the same input. Note also, that, even though the kernel sizes span the entire
embedding dimension, you can use the nn.Conv2d method, and explicitly specify the size of
a kernel using the kernel_size=(kx_size,ky_size) parameter.

3. Set the convolutional kernel to remove the bias term. This is necessary for Section 5.2
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below, in which you explore the words the kernels are closest to. This is done by setting
the parameter bias=False when you instantiate the Conv2d layers in the network. This bias
setting is True by default.

4. Use the ReLU activation function on the convolution output.

5. The network uses a MaxPool operation on the convolution layer output (after activation),
along the sentence length dimension to reduce the amount of output produced from each
kernel. That is, it computes the maximum across the entire sentence length, to obtain one
output feature/number from each sentence for each kernel.

6. Concatenate the outputs from the maxpool operations above to form a vector of dimension
n1 + n2 – be sure you correctly construct the shape of the resulting tensor.

7. Finally, similar to the baseline architecture, use a fully connected layer to produce a scalar
output with Sigmoid activation to represent the probability that the sentence is in the sub-
jective class. Note that the BCEwithLogitsLoss function computes the sigmoid as part of
the loss; to actually determine the probability when printing out an answer, you’ll need to
separately apply a sigmoid on the neural network output value.

5.1 Overfit

Once you’ve finished coding the model, use the overfit dataset, and the parameters k1 = 2, n1 =
50, k2 = 4, n2 = 50 to make sure that you can overfit the model, as discussed in Section 4.4. Report
the training accuracy that you were able to achieve with the overfit dataset. [1 point]

5.2 Training and Parameter Exploration

Explore the parameter space of the CNN in the following steps, using the full dataset:

1. Here you should explore the normal hyper parameters for neural networks along with the
specific ones in this CNN - k1, n1, k2 and n2. As a suggestion, start with k1 = 2, n1 =
10, k2 = 4, n2 = 10 and select the other hyperparameters. After that, explore different values
of k1, n1, k2, n2 to achieve the best accuracy that you can. Report the accuracy and the full
hyperparameter settings. Give the training and validation curves for that best model, and
describe your overall hyperparmeter tuning approach. [4 points]

2. Re-run your best model, but allow the embeddings to be fine-tuned during the training,
by setting the freeze parameter to False on the nn.Embedding.from_pretrained class.
Report the accuracy of the result, and comment on the result. Save this model in a .pt file
as you did in Section 4.7, for use below in Section 6. [2 points]

5.3 Extracting Meaning From Kernels

Observe that one of the kernel’s dimension is the same size as the word embedding. Since the
kernels are trained to learn values that should be present (or not present) in the input, they have
an interpretable meaning, as was the case in Section 4.6. You can explore that meaning using the
function print_closest_cosine_words from Assignment 1. Use that function to determine the
five closest words to each of the words in the the kernels trained in your best classifier. Do those
words make sense? Do the set of words in each given kernel give a broader insight into what the
model is looking for? Explain. [4 points]
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5.4 Submit CNN Code

Submit your full code for this section in either in a notebook file named A2_CNN.ipynb or in a
zip file containing all your python files named A2_CNN.zip. Your code should clearly state how it
should be run, and it should have easy-to-use arguments that allow any part of this Section to be
run. [4 points]

6 Web-based User Interface to Classify Input Sentences Using
Gradio (5 points)

In this section, you will write code that interacts with your best model. You will use the Gradio
software to build this user interface, as Gradio may come in handy during the course project. As
shown in class, your Gradio interface to the model should provide a box for an input sentence,
through a web page, and display the classification from each of the two models (your baseline and
the best cnn), and well as the output “probability” that this sentence is subjective.

First, install the library and read about the basics of Gradio here: https://gradio.app/getting_
started/. Then, write a Gradio-based python script/notebook that takes in a sentence, and out-
puts the result of your best Baseline and CNN networks (that you saved in a .pt file, as described
in Sections 5.2 (part 5) and 4.7, and reload in a separate script/notebook. This output should be
two things: the subjective/objective classification and the associated output probability for each
of the two models.

Your code should process the input string in the following way, to create a tensor that can be input
into the two models:

1. Load the Vocab object as in Section 3.3 using the torchtext.vocab.GloVe object.

2. Load the saved parameters for models you’ve trained:

checkpoint = torch.load(‘filename.pt’)

model = torch.load_state_dict(checkpoint)

3. Using the code given below, split the input string into separate words, and convert the
individual words into their tokens, and then into a tensor:

tokens = sentence.split()

# Convert to integer representation per token

token_ints = [glove.stoi.get(tok, len(glove.stoi)-1) for tok in tokens]

# Convert into a tensor of the shape accepted by the models

token_tensor = torch.LongTensor(token_ints).view(-1,1)

4. Pass this tensor through your models, and display, using gradio, the prediction results.
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6.1 Run and Compare

Run your two best stored models on 4 sentences that you come up with yourself, where two of the
sentences are definitely objective/subjective, and the other two are borderline subjective/objective,
according to your opinion. Include the input and output in your write up. Comment on
how the two models performed and whether they are behaving as you expected. Do they agree
with each other? Which model seems to be performing the best? [1 point]

6.2 Submit Gradio Code

Submit your full code for this section in either in a notebook file named A2_Gradio.ipynb or in a
zip file containing all your python files named A2_Gradio.zip. In addition, submit the two model
files that you used for this section in files named baseline.pt and cnn.pt. Your code should
clearly state how it should be run, and it should have easy-to-use arguments that allow any part
of this Section to be run. [4 points]
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