
 
        ECE 1786 Lecture #4 
 
Work-in-Flight: Assignment 2 - Classification of Language, 

Deadline: Monday  Oct 7 at 9pm  ◦
 
Last Day: Classification of Language Using Word Embeddings 
 
Today:  1. Introduction to Language Models &Transformers 
    2. Course Project Structure, Scope and Deliverables 
 
Assignment 2 has you training two versions of a neural network classifier that 
takes in sentences and produces a classification - that the sentence is either 
objective or subjective.  The same method can do other types of classification 

Sentences are encoded with pre-trained word embeddings ◦
A2 asks you to let the embeddings also be trained/tuned ◦

 
       Introduction to Transformers 

the reason I’m teaching this course is that, in my research on building •
therapeutic chatbots, we found that pre-trained transformers produced 
remarkable results, over 5 years ago, with GPT-2 then 3.  Subsequent 
improvements have continued to be stunning. 

 
Transformers are the state-of-the-art method for: 

Classification of language - not MLP, or CNN as in A2, and not recurrent 1.
neural networks (RNNs) as found in the pre-2018 literature & discussed  
Generation of language, which we haven’t discussed yet outside of lecture 0. 2.

Generation is qualitatively different than classification (in the same way ◦
reading and writing are different, perhaps), but neural networks that can 
do one can be re-purposed to do the other. 

That said, both classification and generation are done through prediction! •
 
We will focus on classification for lectures 4 and 5, and then generation in 
lectures 6,7, and 9. 
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Let’s begin by describing a core topic in NLP: Language Models 

GPT-1/2/3/4+ are called “Large Language Models” [see Jurafsky 3.0/3.1] ◦
 
Given a prior sequence of words, a Language Model determines the probability 
that each word in the vocabulary is a good next word.    
 
e.g. Partial sentence: “I believe clean running water is important for …” 
   High probability words:  health;  success;  everyone;   
   Low probability words: lights;  computers; desks 
 
One definition of good: 

Grammatically correct (when appended to the prior words) 1.
Makes sense (when appended) 2.

 
i.e. that, with that next word, the sentence or partial sentence is likely to ◦
found in the use of the language 

 
A little more specifically, the task of a language model is to do this: 
Given: One or more words in a sequence 
Compute: probability of every word in the vocabulary being the next word 

according to 1 & 2 above (but possibly much more 'goodness') ◦
 
Assume that the size of the vocabulary (# words) |V| = M  
(So we have W0, W1, … WM-1 as the input words) 
 
Now, given a sequence of n words - X0, X1, …, Xn-1 
 
Compute: P(W0 is Xn) 
   P(W1 is Xn) 
    . 
    . 
   P(WM-1 is Xn)   
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Given that we can do this, we can use these probs to compute the ‘likliehood’ •
of an entire sequence of words.  (Again, the likliehood that the sequence is 
grammatical/makes sense; or that this sequence would be found in the use of 
the language) 

Do by computing P(X0)  P(X1) … P(Xn-1) for an n-word sequence. (Multiply) ◦
We can judge a language model by computing this probability on a fixed ◦
sequence of words that are known to be "good."  Must always use the same 
sequence of words to compare different models 
The Perplexity of a model is a function of the above product, but it is both ◦
inverted (so that lower numbers are “better”) and normalized by taking the 
nth root.   

 
 
 
 
 
 
  

In the literature, you’ll see perplexity being used as a metric to judge models, •
and sometimes the output of models themselves.  Lower is better. 

__________________________ 
 
So, the “language model”  that we want is a predictor that looks like this:  
 
 
 
 
 
 
 
 

Does this look familiar?  (Assignment 1, Section 3) •
Except that there is more than 1 word in the input.  (There are n words) •
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We want to train a neural network to make this prediction •
The Xi would be input as word embeddings, (of course?), of dimension d ◦
Could use pre-trained embeddings, like GloVe OR could have the ◦
embeddings themselves be learned as part of the process (i.e. randomly 
initialized like the rest of the network). 

 
Where can we find the training data/examples? •

Everything ever written, again! ◦
Except it turns out, that this time, we are unlocking something very very ◦
powerful -> chatGPT, GPT-4, 4o, Anthropic, Llama ..... 

 
Here is an example set of neural network training examples, create from: 
 
    The smooth blue lake became choppy in the wind. 
 
Training example 1:  
 input:                    (nothing/null) 
 output label:  The 
 
Training example 2: 
 input: The 
 output label: smooth 
 
Example 3: 
 input: The smooth 
 output label: blue      etc. 
 
In example 3, the model will compute P(‘blue’) (& all the other words' 
probabilities), but using the log loss, since blue is the right answer, the loss that 
is computed for this example is  
 
   loss = -log(P(‘blue’))      [just as in Assign 1 Sect 3, cross entropy loss] 
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For a batch of examples of size b, compute •
 
 
  Average loss = 
 
 
 

There are trillions of examples of writing, unlike most other ML problems; •
that writing contains most of human knowledge! 

consider really long input sequences - need to know alot to get it right ◦
 

The transformer architecture that we will use (first, as a classifier) is  •
trained to do exactly the above prediction - predict the probability that each 
word in the vocabulary is the next word after a sequence. 

 
Here is a one view of the picture of a Transformer: •
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We will (but not yet) dive into the details of the Transformer block in Lecture 5 

Suffice it to say that it is a neural network of some kind ◦
 
Three important comments/insights: 
 

One reason this is called a Transformer is that, for each Ti block, the 1.
number of inputs = number of outputs.  So, the information coming in is 
‘transformed’ but not increased or decreased in size.  There are d x n 
numbers coming in and d x n going out, where d is the embedding size. 

This allows an number (K) of Ti blocks to be easily stacked ◦
Using that, one way that the big transformers are made big is by adding ◦
more blocks this way, i.e. just making K bigger 

 •
2.   The number of embeddings coming in - n - is called the context size, and the 
input itself is called the context;  it is very important 

Context is very important in all human communication! ◦
Original Vashwani Transformer, n= 512 ◦

GPT-2 n = 1024 (1K) ‣
GPT-3 n = 2048 (2K) ‣
GPT-4 n= 8K -> 32K; and now much higher still ‣

While bigger seems to always be better, the attention block inside the ◦
transformer is n**2 in the computational complexity;  we’ll cover that next, 
but some of the newer models are finding ways around it. 

 
3. Observe the “Language head” which, to repeat, looks just like the output in 
Assignment 1, Section 3.   

This is used when training the network to be a language model; key note: A.
when we want to use this network to do classification, we chop off this 
language head, and put a classifier "head" - an MLP just to do the 
classification on it, and train it as a classifier, with the parameters of the 
pre-trained transformer blocks left intact. 

4.  The big models are most useful when pre-trained on lots of words - e.g. 
GPT-2 was trained on billions of words, GPT-4 trillions 
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5.  The sequence of words input - X0, X1, X2 … does not contain any information 
about the order of the words (despite it looking like it does). 

Does order of words matter to make this prediction? ◦
e.g. fox the brown quick     vs.  the quick brown fox      --->jumps ◦
Certainly that ordering must matter!  (RNNs don’t have this issue) ◦

 
In the original Vashwani paper, and most Transformers they add a positional •
embedding to the word embedding, to provide the ordering information. 
The number is both initialized in various ways (absolute, relative, sinusoidal) •
and is itself learned. 
This positional encoding and its effect are not well understood •

some Transformers appear to learn without these embeddings;   ◦
there is a paper on this topic that suggests that the training itself does ◦
give a hint as to what the word order is. 
I still find this quite surprising, and not well understood, frankly ◦

 
Note 1:  The word embeddings themselves are learned as part of the same 
training process, as discussed above. 
 
Note 2: In lecture 5 we will talk about the immense power the above training 
puts into a model.  Consider chatGPT & what it can do - it can answer any 
question.  Even more so: the big models appear to do almost anything we ask 
them to do, including classification, but many more things. 
 
Next lecture:  the internal structure of that Transformer block 
 
After the break: The project structure. 
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