
	 	 	 	 	 	 	 	  
	 	 	 	 	 	 	 	 ECE 1786 Lecture #5 
Work-in-Flight: Assignment 3 - Training & Using Transformer, due Mon Oct 23 

Team forming due this week -  form:https://forms.office.com/r/◦
A1Rq7SGsnX  

 
Last Day: Intro to Language Models & Transformers;  Project Structure/Scope 

suggest waiting until after seeing A3 (&A4) to choose topic ◦
Today:  The Core Mechanisms of Transformers & Assignment 3 
 
Recall: When training a Transformer from scratch we train it to be a language 
model: given a sequence of n words, predict the probability that each word in 
the vocabulary is the next (n+1)st word. 
Using sentences that have been written and are coherent/relevant/grammatical: 
e.g “The smooth blue lake became choppy in the wind” gives rise to training 
examples: 
 
Training Example 4: The smooth blue _____ 
Training Example 5:  The smooth blue lake ____ 
Training Example 6:  The smooth blue lake became _____  
 

Lots of training data! Everything ever written! •
Here is the global structure of a transformer, reprised: •

 
 
 
 
 
 
 
 
 
 

Even though n tokens always go in, may use fewer than n, as in above example. •
Important: in a single inference the final MLP just takes in d inputs (not n x d)  •

Which d inputs?  The d inputs corresponding to the last input token ◦
(Which could be n-1, or n-2, n-3, however long the actual input is) ◦
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Now, here is what is in each transformer block Ti: 

Recall it has the same number of numbers in and out ◦
 
 
Here is the structure of one such Transformer Block: 
 
 
 
 

 
 
Multi-Head Self Attention: 
 
The intuition of the Transformer self-attention block is said to be doing: 

The input word embeddings are transformed from their initial, very general ◦
meanings (across all uses/contexts of the words) to something more 
specific to the context - i.e. the other words in the sequence 

 
e.g. the embedding for “bank” would become different in these contexts: ◦

She sat on the river bank … ‣
He emptied his bank account … ‣
They should not bank on the result … ‣
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From * in above picture consider how to compute the outputs Yi from the •
inputs Xi (ignoring skip connections for now) 

 
e.g.   X0      X1     X2  X3     X4 
        He emptied his bank account 
 

Self attention asks the question: how similar is each word to all the preceding •
words and itself?  [See Jurafsky Section 9.8 and 10.1] 

 
e.g.   how similar is X3 (bank) to X0(He)? 

how similar is X3 (bank) to X1(emptied)? ◦
how similar is X3 (bank) to X2(his)? ◦
how similar is X3 (bank) to X3(bank)? ◦

 
How have we computed a single number that says how similar/related two words 
are? 
	 => use the dot product of the word embeddings - bigger means more similar 
 
i.e. compute: 	  
 
 
 
 
 
 
Define    
 
We will need to normalize across these scores when use it to compute 
combination: 
 
So define  
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X3 ¢X3

score(Xi;Xj) = Xi ¢Xj

X3 ¢X0
X3 ¢X1
X3 ¢X2

®ij = softmax(score (xi; xj))8j · i



 
 
 
 
 
 
 
This score,             gives the relative importance of Xj to Xi, and we 
use it to compute a new embedding, Yi that combines different proportions of 
the Xj, like so: 
 
  
 
 

So, we are adding a fraction of the meaning of those other words into the •
original embedding;  the fraction depends on how similar the words are. 
This is how “bank” gets more “river” into it •
The literature refers to these as ‘contextual embeddings’, as does the •
Jurafsky text 

 
Compute the Yi from i = 0 up to n-1 (if all occupied with embeddings) •

Notice that Yi is only allowed to be a function of the input words that came ◦
before it, in what is callled a ‘causal’ model 

 
Now, notice that there are no learned parameters so far.  Gotta have those! 
(I.e. the weights/biases/parameters of the model) 

Will use an ML ‘trick’ to insert learning, as follows: ◦
 
Notice that the Xi get used in three ways: 

as the focus Xi in score(Xi, Xj) - we’ll refer to this as the “query” (perhaps 1.
the word that is asking “who am I really in this context?”) 
As the ‘searched’ Xj in score(Xi,Xj) - call this the “key” 2.
To compute the Yi in ** above  - we’ll call this the “value” 3.

 
In all three cases we will transform the input Xi by multiplying it times (three •
different) matrices consisting of learned parameters.   
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The matrices will be a size that leaves the size of the output the same as the •
Xi input, hence just transformed. 

 
 

e.g. for the query, call it q and compute: •
 
 
 
 
 

Think of WQ as a bit like a CNN kernel ◦
If you multiply this out you’ll see that qi has the same size as Xi ◦
but it has been projected/transformed by WQ ◦

The elements of W are learned parameters, learned through gradient ‣
descent 

 
Similarly there are two other learned W matrices, for the key and the value: •

  
 
 
 
 
 
 
 

Together, qi, ki and vi “look” for patterns in the input and express the output •
based on these, like a CNN kernel 

 
So the overall computation becomes: •
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For each input embedding, Xi, compute: 
 

 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

Note that the same learned • matrices are applied across 
every input Xi “row” in the transformer 

 
I find it  difficult to have strong intuition on what these W are learning;  even •
so it is thought that there are different sets of things to learn, just like 
there are different kernels learned and use successfully in CNNs 

 
So, that brings us to “Multi-Head Self-Attention” •

There are several versions (‘heads’) of these weights so get: ◦
 
 
 
	 where h is the number of heads. 
 

To keep the number of parameters reasonable, some versions of the •
transformer make each head produce only a part of the output embedding size 
by dividing d/h and producing that many numbers in the embedding. 
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Can also use different sizes for the heads of the transformers, and reduce it •
back to the desired size (d) by using a learned transformation matrix called 

 
 
 
 
Now, return to the specific Transformer block above: 
 

The other parts of the above transformer block are more common •
Skip connections (red lines) - are an insurance policy against failed 1.
optimization - essentially ‘skips’ the block if nothing useful happening, but 
keeps the information passing through the block 
Layer Normalization, Dropout and Weight Decay also used 2.

 
Very important:  the computation in between the dashed lines are all •
independent!  Yi is a function of some or all of the Xi, but can all be done in 
paralllel!   This speed-up was crucial to the ability to train against huge 
amounts of training data - trillions of tokens. 

 
Also, the Feed-forward MLPs are isolated - i.e. there are n separated MLPs, •
not one big one, and their parameters are all the same 
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Think of the transform block as a set independently computed “rows”, where •
there is one “row” per input token/embedding. 

Each “row” has the same trained parameters in it, including the layer norm ◦
Similar to a CNN’s kernels - like how the kernel is used all over the image, t ◦
attention, MLP, norm are applied the same on different input token rows 

 
Now, I mentioned that attention is “said” to be working as described, but to •
me this only really makes sense on the very first transformer block T0, and 
even there, just a the beginning attention 
Everything after that is the typical black-box of neural networks - the feed •
forward MLP for example 
THEN, the next transformer block mixes up all the input embeddings again, •
through a different set of learned Matrices on that layer, then MLP and so on 
through all layers. 
To me the key to the transformer is really how wide it is - it keeps the •
information flowing from the input embeddings flowing all the way to the end, 
versus RNNs which “pinched” that information after every word input 

 
Notes on Assignment 3 

Code for Transformer is too complex to write from scratch •
So, A3 gives you Karpathy’s mingpt - a well written, simpler GPT style •
transformer 
You’ll have to read code and try to understand it •
we will use mingpt “nano” which has these parameters: •

# Transformer blocks = 3 = n_layer ◦
# Heads, h = 3 = n_head ◦
Embedding dimension, d = 48 = n_embed ◦

 
The assignment is to train this transformer on a small, then large corpus •
(same as ones from A1) 
Re-use the language model as a sentiment classifier, after fine-tuning it •
Learn to use the Huggingface model hub/code to fine-tune GPT-2 •

 
 

Missing from this lecture:  Positional Embeddings - the answer to the question •
“how does the transformer know the order of the input words?” 
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