
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 ECE 1786 Lecture #5
Work-in-Flight: Assignment 3 - Training & Using Transformer, due Mon Oct 23

Team forming due this week - form:https://forms.office.com/r/◦
A1Rq7SGsnX

Last Day: Intro to Language Models & Transformers; Project Structure/Scope

suggest waiting until after seeing A3 (&A4) to choose topic ◦
Today: The Core Mechanisms of Transformers & Assignment 3

Recall: When training a Transformer from scratch we train it to be a language
model: given a sequence of n words, predict the probability that each word in
the vocabulary is the next (n+1)st word.
Using sentences that have been written and are coherent/relevant/grammatical:
e.g “The smooth blue lake became choppy in the wind” gives rise to training
examples:

Training Example 4: The smooth blue _____
Training Example 5: The smooth blue lake ____
Training Example 6: The smooth blue lake became _____

Lots of training data! Everything ever written! •
Here is the global structure of a transformer, reprised: •

Even though n tokens always go in, may use fewer than n, as in above example. •
Important: in a single inference the final MLP just takes in d inputs (not n x d) •

Which d inputs? The d inputs corresponding to the last input token ◦
(Which could be n-1, or n-2, n-3, however long the actual input is) ◦

S 1

M size of
vocabulary

Now, here is what is in each transformer block Ti:

Recall it has the same number of numbers in and out ◦

Here is the structure of one such Transformer Block:

Multi-Head Self Attention:

The intuition of the Transformer self-attention block is said to be doing:

The input word embeddings are transformed from their initial, very general ◦
meanings (across all uses/contexts of the words) to something more
specific to the context - i.e. the other words in the sequence

e.g. the embedding for “bank” would become different in these contexts: ◦

She sat on the river bank … ‣
He emptied his bank account … ‣
They should not bank on the result … ‣

Xo z S 2
X z

the Zn

Ileaeozof

Yo

Yat

Ard
BLOCK nad

values

nd nad
Ard

values

From * in above picture consider how to compute the outputs Yi from the •
inputs Xi (ignoring skip connections for now)

e.g. X0 X1 X2 X3 X4
 He emptied his bank account

Self attention asks the question: how similar is each word to all the preceding •
words and itself? [See Jurafsky Section 9.8 and 10.1]

e.g. how similar is X3 (bank) to X0(He)?

how similar is X3 (bank) to X1(emptied)? ◦
how similar is X3 (bank) to X2(his)? ◦
how similar is X3 (bank) to X3(bank)? ◦

How have we computed a single number that says how similar/related two words
are?
	 => use the dot product of the word embeddings - bigger means more similar

i.e. compute: 	

Define

We will need to normalize across these scores when use it to compute
combination:

So define

5 3

X3 ¢X3

score(Xi;Xj) = Xi ¢Xj

X3 ¢X0
X3 ¢X1
X3 ¢X2

®ij = softmax(score (xi; xj))8j · i

This score, gives the relative importance of Xj to Xi, and we
use it to compute a new embedding, Yi that combines different proportions of
the Xj, like so:

So, we are adding a fraction of the meaning of those other words into the •
original embedding; the fraction depends on how similar the words are.
This is how “bank” gets more “river” into it •
The literature refers to these as ‘contextual embeddings’, as does the •
Jurafsky text

Compute the Yi from i = 0 up to n-1 (if all occupied with embeddings) •

Notice that Yi is only allowed to be a function of the input words that came ◦
before it, in what is callled a ‘causal’ model

Now, notice that there are no learned parameters so far. Gotta have those!
(I.e. the weights/biases/parameters of the model)

Will use an ML ‘trick’ to insert learning, as follows: ◦

Notice that the Xi get used in three ways:

as the focus Xi in score(Xi, Xj) - we’ll refer to this as the “query” (perhaps 1.
the word that is asking “who am I really in this context?”)
As the ‘searched’ Xj in score(Xi,Xj) - call this the “key” 2.
To compute the Yi in ** above - we’ll call this the “value” 3.

In all three cases we will transform the input Xi by multiplying it times (three •
different) matrices consisting of learned parameters.

5 4
i e

p
only previous

Lij

®ij =
exp (score (xi; xj))Pi
k=0 exp (scae (xi; xk))

8j · i

yi =
X

j·i
®ijxj

The matrices will be a size that leaves the size of the output the same as the •
Xi input, hence just transformed.

e.g. for the query, call it q and compute: •

Think of WQ as a bit like a CNN kernel ◦
If you multiply this out you’ll see that qi has the same size as Xi ◦
but it has been projected/transformed by WQ ◦

The elements of W are learned parameters, learned through gradient ‣
descent

Similarly there are two other learned W matrices, for the key and the value: •

Together, qi, ki and vi “look” for patterns in the input and express the output •
based on these, like a CNN kernel

So the overall computation becomes: •

S S

where W
Q woo No to

Ei

ki =W
KXi

vi =W
VXi

qi =W
QXi

For each input embedding, Xi, compute:

Note that the same learned • matrices are applied across
every input Xi “row” in the transformer

I find it difficult to have strong intuition on what these W are learning; even •
so it is thought that there are different sets of things to learn, just like
there are different kernels learned and use successfully in CNNs

So, that brings us to “Multi-Head Self-Attention” •

There are several versions (‘heads’) of these weights so get: ◦

	 where h is the number of heads.

To keep the number of parameters reasonable, some versions of the •
transformer make each head produce only a part of the output embedding size
by dividing d/h and producing that many numbers in the embedding.

5 6

He Scaled to keep sizesundercontrol

on the
value

the output em edding corresponding to to

®ij = softmax(score (xi; xj)) 8j · i

= softmax(
qi ¢ kjp
d
) 8j · i

W
Q
i ;W

K
i ; and W

V
i 1 5 i 5 h

yi =
X

j·i
®ijvj

WQ;WK; and WV

Can also use different sizes for the heads of the transformers, and reduce it •
back to the desired size (d) by using a learned transformation matrix called

Now, return to the specific Transformer block above:

The other parts of the above transformer block are more common •
Skip connections (red lines) - are an insurance policy against failed 1.
optimization - essentially ‘skips’ the block if nothing useful happening, but
keeps the information passing through the block
Layer Normalization, Dropout and Weight Decay also used 2.

Very important: the computation in between the dashed lines are all •
independent! Yi is a function of some or all of the Xi, but can all be done in
paralllel! This speed-up was crucial to the ability to train against huge
amounts of training data - trillions of tokens.

Also, the Feed-forward MLPs are isolated - i.e. there are n separated MLPs, •
not one big one, and their parameters are all the same

57

Yo

Yat

Ad nd nd
had

WO (hdv£ d)

Think of the transform block as a set independently computed “rows”, where •
there is one “row” per input token/embedding.

Each “row” has the same trained parameters in it, including the layer norm ◦
Similar to a CNN’s kernels - like how the kernel is used all over the image, t ◦
attention, MLP, norm are applied the same on different input token rows

Now, I mentioned that attention is “said” to be working as described, but to •
me this only really makes sense on the very first transformer block T0, and
even there, just a the beginning attention
Everything after that is the typical black-box of neural networks - the feed •
forward MLP for example
THEN, the next transformer block mixes up all the input embeddings again, •
through a different set of learned Matrices on that layer, then MLP and so on
through all layers.
To me the key to the transformer is really how wide it is - it keeps the •
information flowing from the input embeddings flowing all the way to the end,
versus RNNs which “pinched” that information after every word input

Notes on Assignment 3

Code for Transformer is too complex to write from scratch •
So, A3 gives you Karpathy’s mingpt - a well written, simpler GPT style •
transformer
You’ll have to read code and try to understand it •
we will use mingpt “nano” which has these parameters: •

Transformer blocks = 3 = n_layer ◦
Heads, h = 3 = n_head ◦
Embedding dimension, d = 48 = n_embed ◦

The assignment is to train this transformer on a small, then large corpus •
(same as ones from A1)
Re-use the language model as a sentiment classifier, after fine-tuning it •
Learn to use the Huggingface model hub/code to fine-tune GPT-2 •

Missing from this lecture: Positional Embeddings - the answer to the question •
“how does the transformer know the order of the input words?”

58

