2.1. The proof is as follows:

(Fry)y{z+e) = zedrz+oy+yz
= B gz oy b yz
= z{l+z+y)+yz

= r-l4yz
= X +uz
2.2, The proofis as follows:

E+y)-(E+7) = zotay+aftyp
= z-+tay+aF+0
= (]l +y+ )
= x-1
=

2.6. A possible approach for determining whether or not the expressions are valid is to try to manipulate the left
and right sides of an expression into the same form, using the theorems and properties presented in section
2.5. While this may seem simple, it is an awkward approach, because it is not obvious what target form one
should try to reach. A much simpler approach is to construct a truth table for each side of an expression. If
the truth tables are identical, then the expression is valid. Using this approach, we can show that the answers
are:

(a) Yes

(b) Yes
{cy No

2.7. Timing diagram of the waveforms that can be observed on all wires of the circuit:




2.11. Derivation of the minimum sum-of-products expression:

f

T1x3 + o Eg + T120T3 + T X7

21{Fs + x9)ag + £1F2(Fg ++ 73) -+ Frzozs + Ty1Tals

Z1Eary + T1Teky 2Ty + T Toxg + E1EoFy
E1Ta + (Ig “+ Ty TaTs + (fE1 -+ Fy YEoTs

ZiEy + TaTy + TaTs

2.13. The simplest POS expression is derived as

f =

i

{z1 + =3+ 24){xy + T +w3)(zy + T+ Fa 4+ 2y)

)
() + 23 + 34)
(5111 + x5 + 24)

)

(1 + 23 + 14

{Z1 + ws + z4) (g + Ty + x4y 4+ Ty + Z4)

2.20. The simplest SOP implementation of the function js

f

Another possibility is

{

{1 +Fa +xa){my +Fg + o + )y + Ty 4+ T £ Zq)
(2:1 + o + mg)((Il + Ty + 334)(1.‘3 + 3"_3))
(Il + T + $3)($1 4+ Tg + &1) .

1

T1Taxz + T2y + 2159 Ts + 21T2F5 + IV I9Ty

Ey{F2 + xa)rs + 21 (Fe + 22)%3 + (F) + 22073

173 + X1 Fs + Todg

= Fios+ oTy + o120

2.21. The simplest POS implementation of the function is

2.28. Using the ciruit in Figure 2.254 as a starting point, the function in Fi

f

NAND gates as follows:

Xlw-

Xy -

i
P

It

(1 + a9 + ;!:3)(3:1 + Tn + .Eg)(mf; + Iy 4 Ty

((my +aa) +ao){(zy + 23) + F2)(E) + 2 + 3y)

{z1 4+ 23 )Ty + 22 + T3)

O

gure 2.24 can be implemented using




2.29. Using the ciruit in Figure 2.25b as a starting point, the function in Figure 2.24 can be implemented using
NOR gates as follows:

Xy )
Xy —f : )

LERE—

2.30. The circuit in Figure 2.33 can be implemented using NAND and NOR gates as follows:

1
X3

X4

EnY
T

3.4, Using the circuit

The number of transistors needed is 16,

3.5. Using the circuit

The number of transistors needed is 20,




3.6, (a)

X; Xy X3 !
6 0 6 1
e 0 1 1
01 0 1
0 1 1 1
P00 i
I 6 1 0
1 1 0 0
I 1 1 0

{h) The canonical SOP expression is
o= By EoFs + T1Taxy + F1Toly +Fiooxa + 21 TaTx
The number of transistors required using only AND, OR, and NOT gates is

#transistors = NOT. gates x 2+ AND _gates x § + OR.gates x 12
3x24+5x841x12=>58

3.7 (o)
Xy Xy Xg Xy I X Xy X3 Xy r
006 0 0 ] OO0 i
00 01 & 1 0 0 ¢ G
001 0 0 Lo 1 0 0
00 1 1 ] 10 1 1 0
61 & 0 1 11 ¢ 0 0
¢ 1 01 0 101 0
01 19 0 Y10 0
01 1t i 0 I v 11 0
(by
s ByToBaTy + TraoTaly + o) TaBsTy
= T EaTg + Te¥a¥a

The number of transistors required using only AND, OR, and NOT gates is

Ftransistors = NOT.gates x 24+ AND_gates x § + OR_gates x 4
= AX24+2xB+1x4=28

38

Voo




3.16. Minimum SOP expression for f is

313

f == szfg + hflﬁ?-g 4 "’:!’:2?4 + 5154
(T1 + Fo){Ta + Za)

e

[
[

It

which leads to the circnit
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The cirenit is
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3.45, Fhe canonical SOP for f is

[ =T 09Ty + Fraaxmy + 2 TaT5 + tixaEs + Ty@eTy

3.46. The canonical SOP for f is

This expression can be manipulated into

= F1xy + 313 + 210

= Ty -+ T1dy

f
P
0
.
3 0

[ = mymwany + 2owsFy + F1FaTy

Fo= g {angs + 2sFy) + Ta (T1Ts)

This expression can be manipulated into

Using functional decomposition we have

—— e D

= fy 4 Fafo

ho=
e

Tyg b el

Xyt a3y




3.49. (a) 50 1

X, e 0+xx,

j Iy tag el = xxp vy

—

&)

0 0 0
*3
i
EyeQtuyfx, tx,) = XXy txaxy
Xy ol X

4.1, SOP form: [ = Fyua + Toxs
POS form: f = (F; + Za){zy + x3)

4.2, SOP form: f = 1%y + 123 + Toxy
POS form: f = {z) + x3¥{wy + Tp)(Tg + x3)

4,3, SOP form: [ = FrmoxsTs b myraTors + ToTriy )
POS form: § = {7 + T4)(£;2 + z3)(Fy + Ty + ’f,;)(ifg + g} 4 x3)

4.8

4.11. The statement is false, As a counter example consider floyzy, 2y) = 5 (0.5, 7).
Then, the minimuni-cost SOP form f = 225 + 7, Tz is unique.
But, there are two minimum-cost POS forms:
F={ao + 553}(?1?; + ”13){&1 + ¥n} and
f= oy + Fa)(F1 + xa)(Fa + 23)



4.13. If each circuit is implemented separately:

o= F1mamy + Boxads b £3F4Ts + F1TaFyas

g = T3%s + TyTs -+ T1T2Ty + T1T2L4 + TaTaZs

In a combined circuit:
[ =TFizory + Toxqrs + T3T4Ts + T1TaTgrs

g = Ti1TaTq4 + TpTaTs + T3TaTs + T1X2T4Ts + TaTs

The first 4 product terms are shared, hence the total cost is 31, Note that in this impiementation f C g, thus

Cost = 22
Cost = 24

g can be realized as g = f + T3Fs, in which case the total cost is lowered to 28,

5.1. () 478
(b) 743

{cy 2025

(d) 41567

5.3 {a) 478

5.4, The numbers are represented as follows:

() 281
©) -2

Decimal § Sign and Magnitude | 1°s Complement | 2's Complement
73 000001001001 000001061001 | 000001001001

1906 011101110010 OfLI0T1I0010 | 011101110010

—~95 100001011111 1111161600600 | 111110100001

1630 111001011 E10 100110100001 100110100010

5.5. The results of the operations are:

{a): 00110110 54 by 01110101 17 (cx 11611111 {—33)
+H01000101  +69 +11011110 — 34 10111600  +(~72)
01111011 123 01010611 83 10010111 (-10%)

(d): 00110110 54 (e) 01110101 (7 oy 11010611 {--45)
-00101011 —43 11010110 —(— 42) =11101106  —(-20)
00001011 3! 10811111 (1593 11100111 (—25

Arithmetic overflow occurs in example ¢; note that the pattern 16011111 represents —97 rather than +159.

5.9. Construct the truth table

oy Yn-1 Criee} Crn | Sp—1 (Sigﬂ blt) Overflow |
G 0 0 0 ¢ 0
0 ¢ H 0 ! i
0 1 0 6 1 G
0 l I i 0 0
i 0 0 0 i 0
1 0 1 1 0 0
1 1 0 1 0 1
H 1 1 1 i 0

Note that overflow cannot occur when two numbers with opposite signs are added. From the truth table the
overflow expression is
Cwer flow = Theny + afpey = 0 @ 0y



5.12. From Expression 5.4, each ¢; requires § AND gates and one OR gate. Therefore, to determine all ¢; signals
we need S0 (14 1) = (n? + 3n)/2 gates. In addition to this, we need 3n gates to generate all g, p, and s

gl

functions. Therefore, a total of (n? + 9n)/2 gates are needed.

5.13. 84 pates.

5.14. The circuit for a 4-bit version of the adder based on the hierarchical structure in Figure 5.18 is constructed

as follows:
I3 ¥y X2 ¥ Xy ¥y % Yo
Block | Blockl |= Cy
G l GoiPo i
.3‘3 .§'2 ,S'i SO
Po= Toh
‘ 4 = T
p— L] Pa = pipo
T €2 Gy = ¢ + Pigo

5.19. BCD subtraction can be performed using 10°s complement representation, using an approach that is similar
to 2's complement subtraction. Note that 10°s and 2's complements are the radix complements in number
systems where the radices are 10 and 2, respectively. Let X and ¥ be BCD numbers given in 10’s comple-
ment representation, such that the sign (left-most) BCD digit is 0 for positive numbers and ¢ for negative
numbers. Then, the subtraction operation S = X — Y is perfermed by finding the 10°s complement of ¥
and adding it to X, ignoring any carry-out from the sign-digi position.

For example, let X = 068 and Y = 043. Then, the 10’s complement of ¥ is 957, and 5§/ = 008 -+ 957 =
10625, Dropping the carry-out of 1 from the sign-digit position gives S = 025,

As another example, let X = 032 and Y = 043. Then, § = 032 -+ 957 = 989, which represents —11 .

The 10’s complement of Y can be formed by adding 1 to the 9°s complement of Y. Therefore, a circuit that
can add and subtract BCD operands can be designed as follows:

X Y

g

9’s complementer

—  Add/Sub

For the 9’s complementer one can use the circuit designed in problem 5.18. The BCD adder is a circuit
based on the approach iliustrated in Figure 5.40.



521, A full-adder circuit can be used, such that two of the bits of the number are connected as mnputs x and g,
while the third bit is connected as the carry-in. Then, the carry-out and sum bits will indicate how many
input bits are equal to 1.
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6.3

wy wy Wy | f

009

0 0 ¢

0 1 0

0 1 i

i1 040

1 0 i
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6.5. The function f can be expressed as
f = T WyWs + Wywe®Ws + Wrwnws + whwyis
Expansion in terms of wy produces
[ = (we +3) + wi (w3}

The corresponding circuit is
M’E
WZ p—
W3 .
7

¢.6. The function f can be expressed as

[ o= Wit il + wn Wallly 4 wywalliy + uqwelly

Expansion n terms of wy produces
S o= W) + wolwy )

The corresponding circait is

6.11. Expansion in terms of ws gives
f = ﬁ?g(ﬁ}; + :533} -+ ’Ei:‘g(?i,’l ws

Letting g = @y + s, we have
[ =Ty 4 wel

The corresponding circuit is

Wy e

1
1
Wy [ D A - f
3 0 :

S —




6.13. Using Shannon’s expansion in terms of wy we have

o= Wa(Ws + W) + wa{walBy + wywy)

Ifwe let g = W3 + Wiy, then
fre=ag + wad
Thas, two 3-LUTs are needed to implement f.

6.16. Using Shannon’s expansion in terms of wg we have

J o= @Ws(ws) + walw: + Ta)
= Walwe) + wa{Wa +weun)

The corresponding circuit is

w3

w3

Wy

6.22. The code in Figure P6.3 will instantiate latches on the outputs of the decoder because the if statement does
not specify all possibilities in a combinational circuit. |t can be fixed by including the else clause

eise Y[k] = 0;

after the if clause.

6.24. An 8-to-3 priority encoder can be implemented using a case statement as follows:

meodule prob6.24 (W, Y, z);
input [7:0]W,;
output {2:0]Y;
output z;
reg [2:01Y;
reg #

always @(W)
begin
zo= )
case (W)
B bIxxxxxxx:
B b0 Ixxxxxx:
8 b00 T xxxxx:
8000 xxxx:
§ 0000 kxx:
806000 Ixx:
8 bOB00001x:

i

L]

(I

A L S L
g P RNV R N

8'b000000B01: Y = 0
default:  begin
z=1{
Y = 3'bx;
end
endcase

endmedule
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7.13. Let 5 = 5189 be a binary number that specifics the number of bit-positions by which to rotate. Also let 1.

be a parailelload input, and tet R == roryrors be parallel data. If the inputs to the flip-flops are dy. . . ds

3

and the outputs are ¢q . . . g3, then the barrel-shifter can be represented by the logic expressions

dy
[# i;
{f.;z

s

L
L.

L
L

o b L {8 Bago + F15093 + s150q2 + 18001 )

vyt L (Bi80qn + Frsogs + $15003 + s150Ga)

- I ol el E S
Ty o+ L (BF0gy + T 8pq1 + 515090 515043 )

ra + Lo (8130gs + Frs00z - $150q1 + 818040



7.17.

Up/down
N L
DT D
Clock > Qb —b O > Q
7.24. // Ring counter with synchronous reset

module ripplen (Resetn, Clock, Q);
parametern = §;
input Resetn, Clock;
eutput [n—1:071Q;
reg [n—1:0]Q;

always @(posedge Clock)
if {{Resetn)
begin
Q71 <=10;
Q0 <=1
end
else
Q <= {{QI6:01}, {QI71} 1

endmodule

7.34. With non-blocking assignments, the result of the assignment £ <= A[1] & A[0} is not seen by the successive
assignments inside the for loop. Thus, f has an uninitialized value when the for loop is entered. Similarly,
cach for loop interation sees the unitialized value of f. The result of the code is the sequential circuit

specified by f= {1 Aln-1] Afn-2).

8.1. The expressions for the inputs of the flip-flops are

Dy = Yo= Ty +77,
D= Y= wdyndnp
The output equation is
=Y
8.3. A possible state table 1s
Present Next state Output z B
state w=0 w=1]w=40 w=1

A A 2] ¢ o
B B C 9 {
C E D 0 ¢
D 2 b 0 H
E F B 0 0
F A B 0 1




8.5. A minimal state tgble is

8.6. An initial attempt at deriving a state table may be

States B and E are equivalent; hence the minima! state table is

8.7. For Figure 8.51 have (using the straightforward state assignment):

Thig leads to

Present Next State Output
state w o=} o= z
A A B ¢
B E C 0
C D C 0
b A I3 1
E A F 0
F E C H
Present Next state Cutput z
AU T e w=l|w=0 w=1
A A B 0 0
B D C 0 0
C D C 1 0
D A E 0 |
E b C 0 it
Present | Next state Output z
state w=0 w=1|w=0 w=]
A A B ¢ 0
B D C 0 0
C D C 1 0
D A B 0 1
Next state
Present Output
state w=10 o= 1 P
Yaaih a¥a¥V:  Va¥aVs “
Al 000 001 0160 1
Bl 001 G11 101 1
C| 0190 101 100 0
B 011 001 110 1
E 100 101 016 4]
i 101 160 D11 0
G 110 P01 116G 0
Yi = Wy +Thyve Y winls
Yoo o= wyy +wl Yo b wyrys + Tyl
Vi = WY wynil

]

Vil T Toly




For Figure 8.52 have

Next state
Present

state w=0 w=1

Yaihy Y2 Yl YZY.’i z

OCutput

A o0 01 10 1
B a1 00 11 1
C 10 i1 10 0
F il 10 a0 0
This leads to
Yo = Wy +Ype+ul
Yo o= HT+wnd,
£ o= U

Clearly, minimizing the number of states leads to a much simpler circuit.

8.12. A minimum state table is shown below. We assume that the 3-bit patterns do not overlap.

Present Next state Output
S = w1 P
A B C 0
B D E 0
C o |3} 0
D A F 0
E F A 0
F B C 1

8.14. The timing diagram is

Clock | !

t § 1
p) ! 1 i 1 :
: | ! | ]
i H H H t
Y. ¥a H | : 1 | i
+ H £ H T
¥ t 5 H I
SMcmfy { i i £ l i i l 1 I
i
'
3



8.23. The state diagram is

Present Next state Qutput
state w=0 ws=1 27120
A A B 000
B B C 001
C C D 010
D D E 01
E E F 160
F F A 101
The state-assigned table is
Present Next state o
state jw=0 w=1 utput
Yalilo 12y
2Nl The next-state expressions are
000 000 001 0040 . -
Yo = 2
001 | 001 010 ] 001 2 = Yolz s yy ol
010 | 010 011 | 010 Vio= Tobn + Wyr + wyodh U
011 7 0lt 100 | 011 Yo = Wys+wi
1G0 100 101 100
101 101 000 101 The outputs are: 29 = yo, 21 = y1, and 25 = yp.

8.29. The next-state and output expressions are

D= Y1 = wiy +y)
Dy = Yo = wi +%)
z zz y1§2

The corresponding state-assigned table is

Next state
Present Outout
state we=0 w1 utpu
a2 Y,V YaY z
Y 00 18 0
01 06 i 1
16 0G 1] 6
il 00 01 0
This leads to the state table
Present Next state Quiput
state w0 w1 .
A A [ 0
¢ A D 0
D A B 0

The circuit preduces = = 1 whenever the input sequence on w comprises a 0 followed by an even number
of 1s.




