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Introduction  
Coda is a deep learning model which classifies the main instruments within multi-instrumental 
music. In this context, the main instruments are defined as those which sound the most 
prevalent, as determined by the authors of the dataset used to train the model. 


The significant rise in the popularity of music streaming services has led to a revolution in how 
music is categorized, with ever-increasing specificity for the purpose of personalized 
recommender systems. Coda contributes to this area by providing a tool for sorting music 
based on instruments, a key factor in acoustic-based genres such as classical and jazz. 


Deep learning applies well to this situation since audio contains a significant level of variation 
and noise. Common examples include background noise and tuning deviations, which may 
alter similar pieces of audio. As a result, the flexibility of a deep learning model can be used to 
determine the characteristic features associated with various instruments.


Illustration 



Figure 2: General overview of the structure of our final model, the multi-binary MLP (MBMLP). The 
audio file (represented as a normalized NumPy array) is the input for each of the 11 binary MLPs, who 
return either 1 or 0, giving a final output of an 11-element list for each of the 11 instrument classes. 

Figure 1: Pipeline of our software.



Background  
Gomez et al. [1] explored the classification of solo instruments in jazz ensemble music. To 
begin, they first established a baseline model proposed by Han et al. [2] as shown in Figure 5. 
Then, they attempted to improve this model for their specific jazz use-case by preprocessing 
the audio to separate the solo instrument from the accompaniment instruments which led to a 
better generalization of unseen data.  


Additionally, Hershey et al. [3] explored the performance of popular CNN architectures for 
general audio classification. Models tested include AlexNet, VGG, Inception V3, and 
ResNet-50. The baseline model consisted of a simple, fully connected model with 3 layers of 
1000 units each followed by a ReLU activation. The underlying motivation was that audio 
classification is similar to image classification, where the models can detect specific features 
from the spectral representation of audio files and relate those to the corresponding labels. 


Data Collection/Processing  
Audio data was taken from the IRMAS dataset, containing 6,705 training examples and 2,874 
test examples spanning across 11 instrument classes. Each training example contains a 3 
second long .wav file with a single corresponding label in a .txt file, seen in Figure 4. Each test 
example contains an audio file of 5-20 seconds and contained up to 5 labels. All of the audio 
files were hand-labeled by the authors, who ensured that the annotated instruments are the 
same throughout the whole excerpt. The statistics of the training set is shown in Table 1. 





Figure 4: An example of a piece of training data, with audio file (left) and 
corresponding single label (right). The test data has similar format except for the fact 
that each label file may contain multiple labels. “pia” is an abbreviation of piano.

Figure 3: The architecture for each binary MLP from Figure 2.  



A Python script was written to load each audio file into the LibROSA library for further 
processing while parsing the .txt file for the label. 


To begin preprocessing, the harmonic and percussive components of the audio were separated 
to further isolate the main instrument. Using only the harmonic components, we computed the 
Mel-scaled spectrogram, which is the representation of audio in the frequency domain scaled 
by a non-linear function. The output is a 128x65 NumPy array, where each column represents 
0.05 seconds in time while the rows are frequency bins. The array columns were then 
normalized to a mean of 0 and standard deviation of 1 using: 


 


Due to the small number of training examples for each class, data augmentation was also 
implemented. We added Gaussian noise to the Mel-scaled spectrogram and also slowed down 
the audio to 0.5 speed before cropping to 3 seconds. These actions essentially triples our data.	


The data was saved as a Pandas dataframe, where the first column contains the NumPy arrays 
and the second column contains the labels. This pipeline is visually represented in Figure 1.


col =
col − meancol

sdcol

Table 1: Statistics for number of training examples for each of the 11 instrument classes. 

Instrument Class Number of Training Examples 

Cello 388

Clarinet 505

Flute 451

Acoustic Guitar 637

Electric Guitar 760

Organ 682

Piano 721

Saxophone 626

Trumpet 577

Violin 580

Voice 778



Baseline Model 
The baseline model is a fully-connected MLP with 3 layers, 1000 neurons each, 64 batch-size, 
learning rate of 0.0001, and 50 epochs. The first two layers use a ReLU output while the final 
layer uses a sigmoid. The 128x65 NumPy arrays were reshaped to 1x8320 to be a suitable 
input for the MLP. 





Architecture 
As training examples contain one label while test examples contain multiple, we decided to 
construct a multi-binary MLP (MBMLP) system consisting of a fully-connected MLP binary 
classifier for each instrument class, seen previously in Figure 2.


Developing the model consists of training 11 MLP binary classifiers. For each instrument class, 
we collect all of the training data which contains the label of our target instrument. Then, out of 
the remaining training data of the other 10 instruments, we randomly select an equal number of 
examples to balance our training set. 


We implemented a coarse-to-fine hyperparameter search strategy to fine tune our model. This 
ultimately resulted in 4 fully connected layers starting with 5000 neurons and then going to 
3000, 1000, and finally 1 neuron for the final binary output. We used a 64 batch-size, learning 
rate of 0.0001, and 50 epochs. BCELoss was chosen as the criterion and Adam was chosen as 
the optimizer. 


The resulting MBMLP is then able to predict multiple instruments. Given the same processed 
audio array, each individual binary classifier will make a prediction of whether its specific 
instrument is present or not. As a result, the output of the MBMLP model is an 11-element list 
which displays the predictions of each binary classifier. 


Quantitative Results 
Figure 6 shows the accuracy and loss for both training and validation of our final MBMLP 
model. Analyzing accuracy, we see that training accuracy averages at around 77% while the 
validation accuracy is around 70%, with the highest value being 75.3%. Given the context of 
11 instrument classes, these accuracy values are quite good, since a randomly guessing model 
will only achieve a 9% accuracy.


Figure 5: 3 layered MLP used for baseline model.



Additionally, in both the loss and accuracy plots, the validation values closely follow the 
training values, indicating that the model is not overfitting. As mentioned above, the difference 
in training and validation accuracy differs by around 7%, and we can determine visually that 
the loss does not overfit either. Minimal overfitting is further evident by the fact that the test 
accuracy of this model is 68.4%. Overall, we can conclude that the MBMLP model generalizes 
well. 


One significant characteristic of the validation values is the large fluctuations, especially 
apparent in the accuracy plot. Although the reason for this is not quite clear, it may be useful 
for future reference to train the model for more epochs, as this has empirically been shown to 
generate a smoother curve. 


Figure 6: Training and validation plots of MBMLP loss and accuracy. 

Figure 7: Confusion matrix of each instrument.



Finally, Figure 7 shows the confusion matrices of the 11 instrument classes after running the 
MBMLP for 50 epochs. We see the larger values are along the diagonal, further suggesting the 
accuracy of our model. To minimize both false positives and negatives, the F1 score for each 
matrix was calculated, with most of them in the mid-to-high 0.90 range. 


Qualitative Results 
Looking at the confusion matrices from Figure 7, we notice that instruments with over 100 false 
positive and negatives are the cello, acoustic guitar, electric guitar, and violin. Accordingly, their 
F1 scores are also the lowest amongst all classes. These aforementioned instruments are all 
strings, which suggests that it is harder for the model to discern amongst the same instrument 
category. In contrast, voice has the highest F1 score, suggesting it is easier for the model to 
distinguish due to its distinct timbre and having no other classes sound similar to it.  


To obtain more insight into the high number of false positives and false negatives amongst 
string instruments, the model was given a test dataset containing string instruments. Some 
results are shown in Table 2.


 


Although they may sound different to an experienced human ear, the MBMLP model solely 
makes its prediction based on the frequency values of the instruments. String instruments can 
share many of the same frequencies, especially when played within the same range of pitches. 
Although there are inherent frequency differences between string instruments in terms of 
overtones, these small distinctions may be lost due to the existence of other overlapping 
instruments. This is especially apparent in Entry 3 of Table 2, where the model only ‘heard’ the 
more powerful electric guitar, which obscured the small distinctions in frequency that 
differentiates it with the acoustic guitar. 


Prediction Label Interpretation

1 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1] 
Electric guitar, voice

[0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1] 
Electric guitar, violin, voice

Violin may have been 
“lost” behind the guitar

2 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Electric guitar

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

Acoustic guitar

Misclassified guitar

3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Electric guitar

[0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]

Acoustic guitar, Electric guitar

Only “heard” one guitar

4 [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

Cello, acoustic guitar

[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

Cello, violin

Thought violin was a 
guitar

Table 2: Comparison of predictions and labels containing string instruments.



Discussion and Learnings 
Given the relatively high difficulty of the task which our model attempts to complete, we are 
satisfied with the performance of our model. A main contribution to the difficulty of this project 
is that audio is inherently messy, as there can be many different types of variation such as 
background noise and tuning deviations which can lead to difficulty in generalizing a model.  


Compounded with this, classifying one instrument out of many playing at the same time is 
much harder than classifying a lone instrument. Features from multiple instruments overlap 
within the frequency domain, as different instrument sounds share many of the same frequency 
values. As a result, this means for a given frequency strength, the model must determine which 
instruments contribute to it as well as how much each of those instruments contribute.


We also noticed that most of the literature utilizes a single multi-class model to classify one 
main instrument only, while we are classifying multiple dominant instruments. Intuitively, this is 
a much more difficult problem, which may explain why our accuracies are lower than those 
found in literature. During our model exploration, we discovered that our MBMLP model 
performed better than traditional single multi-class models such as CNNs and RNNs. This 
suggests that given addition time and resources, coupled with our MBMLP model, we may get 
exceedingly better accuracies. 


Going back to our results, we initially expected that the CNN and RNN would perform better 
than our MLP. The discrepancy may be due to the nature of image vs. audio inputs. In our data 
preprocessing, the use of Fourier transforms to extract important and distinguishing features 
within the audio is analogous to applying a CNN on the raw audio data. Thus, the MLP 
performed better as it acted as the linear layer following the ‘convolutions’ which the Fourier 
transform produced. It also shows that performing a CNN or RNN on already feature-extracted 
data proved to negate its effectiveness and worsen the results.


For future reference, we may consider using our baseline MLP on the raw audio before the 
Fourier transform so we have a better reference to compare against. Additionally, we would 
look into additional methods of data preprocessing to further isolate the main instrument and 
get a higher accuracy.  


Ethical Framework  
The implementation of Coda within music streaming services will allow for greater specificity in 
the categorization and playlist curation of music. Since the underlying goal of recommender 
systems is to introduce users to new music they enjoy while minimizing those they do not, 
Coda may further isolate artists who specialize in less popular instruments. As a result, this 
negatively affects the autonomy of individual artists, who become more alienated should they 
choose a less mainstream musical path. If we specifically examine Spotify, one of the largest 
music streaming services, whose playlist recommendations play an important factor in what 
music becomes popular [4], the impact to an artist’s success can be significant. 




On the other hand, a smarter recommender system can improve the user experience of 
Spotify’s massive customer base of 99 million paid users. This has a positive effect on Coda’s 
principle of beneficence and justice, as it provides a useful tool to a large population. 


Finally, Spotify records data on which tracks get skipped and excludes those with high skip 
rates from future playlists. This is shaping songwriting and production as shorter tracks with 
flashy intros perform better in the algorithm [5]. Essentially, Spotify’s current algorithm is 
unnaturally influencing the evolution of music. This has significant impacts on music producers,   
who must adapt to the faster-changing tastes in music. This introduces harm to these 
stakeholders, which also negatively impacts Coda’s non-maleficence principle. 
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