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Introduction: 

This project aims to generate content-relevant hashtags for foodie Instagram posts based on the image in 

the post. This is useful as hashtags can be used for self-promotions, as well as analyzing market trends on 

social media, making our project relevant to average social media users and corporate market analysts 

alike. The scope is limited to foodie posts as this genre of posts does not contain gifs or videos.  

We have chosen machine learning to be our approach, as image classification is a very complex problem 

to feature engineer and has historically been more solvable by machine learning. And since both the data 

(Instagram posts) and labels (hashtags) are readily available online, a relatively large dataset can be easily 

curated with the use of web crawlers.  

  



Background and Past work: 

Since hashtags are common tags for images, image classification using hashtags have been done in the 

past. Facebook [1] has experimented using hashtag-labeled images to pre-trained models. For their 2018 

paper [1], they have obtained 17 billion images, and approximately 17k hashtag labels (by grouping 

hashtags with similar meanings). In this model, they have used an image size of 224x224 and trained it on 

a 101-layered CNN. Their resultant model achieved a top-1 accuracy of 85.4% and a top-5 accuracy of 

97.6%.  

On Instagrammer's hashtag generator [2] is a similar product to ours. It’s able to generate a list of 

hashtags based on an input image. Their approach seems to be performing a multi-class classification to 

identify objects in the image, then select hashtags that are related to the object.  

Data and Data Processing: 

The data is obtained using an Instagram crawler by Huaying Tsai [3] which obtains Instagram posts by 

the ID of users. A set of 100 food Instagram accounts is randomly selected from many feature articles [4] 

[5] [6]. The crawler then crawls all the images from the most recent 5 and 100 posts of those accounts for 

the overfit dataset and large dataset respectively, theoretically collecting 500 and 10000 images 

respectively. However, due to the updates of Instagram policies and issues with the crawler, the data has 

the following counts: 

 

As a dataset for a multilabel classification problem, the dataset has many more hashtags  (labels) than 

samples. The occurrence of each hashtag and number of hashtags for each image varies in a wide range as 

shown below: 



Overfit Dataset: 

 

Large Dataset: 

 

From the number of hashtags per image, we can see that some images have more hashtags than others. 

This might pose a challenge to a conventional CNN multi-label classifier, as the one-hot-encoded output 

would have different magnitudes for different inputs. (I.e. some output would have 2 ones, while others 

might have 30).  

  



Preprocessing: 

By inspecting the data and the presented statistics, the dataset appears to be imbalanced. In addition, 

Instagram images come in different sizes and may have filters. Thus, the following pre-processing is 

applied: 

1. Resize every image to 200×200 pixels. 

2. Use torchvision.transform.Colorjitter to address filters. 

3. Each image is normalized across all pixels and 3 channels. 

Note that the imbalance is not addressed in preprocessing since the hashtags that appear more often 

should have more importance. This feature should be reflected in the dataset for the model to learn.  

The large dataset was split into train, validation and split as shown in the table below: 

 



 Architecture: 

 

The main idea of our model is to take advantage of the fact that a lot of hashtags have similar meanings 

(like #SundayMorningBreakfast and #Breakfast). If we can turn the hashtag into embeddings that reflect 

their closeness, and let the model learn to output these more abstract embeddings instead of the classes, it 

might be able to reduce the negative effect of having such a massive number of classes.  

Based on this idea, the model is designed to have two parts: a word2vec model and a CNN model. The 

word2vec model takes all hashtags and transforms them into embeddings of dimension 40. The CNN will 

then produce an output of the same dimension. The cosine distances between the output and each 

hashtags embedding are then computed to see which hashtags are likely to be correct. A result ≥ 0.5 after 

sigmoid gives a positive prediction (labeled with the hashtag) and the prediction is negative otherwise. 

  



Hashtag embedding: 

 

To generate the hashtag embeddings, a skip-gram model with negative sampling found on GitHub is used 

[7]. We treat a group of hashtags that are all under the same post as a sentence, each hashtag as an 

individual word, and the hashtags around it as the context. (the analogy is shown in figure P) Then the 

hashtag embeddings are trained by converting the collected data into a corpus and feeding the corpus into 

the skip-gram model.  

  



The key hyper-parameters to optimize for are the window size, embedding size, and the number of 

epochs, as the rest of the hyperparameters have default values from the model we found. The window size 

tells the model how many hashtags should be considered as the context, and the embedding size is the 

size of the embedding. The chosen hyperparameters chosen are shown below.  

 

 



A grid search is used to find the best embedding size and window size. From the result we can see when 

the window size gets to 10, the model diverges fairly quickly (observing the hashtag embedding shows all 

values of the embeddings reached either positive or negative infinity). Further testing shows that the 

model with a window size of 5 also diverges after 21-23 epochs. For this reason, the window size of 5 and 

epoch of 10 are chosen. The testing also shows that the embedding size has little effect on accuracy, 

therefore a small but conservative size of 40 is chosen.  

Image processing: 

The image part utilizes Resnet50, which is a pre-trained CNN with 50 layers. The output layer is replaced 

with a 40-neuron layer to output the same dimension as the hashtag embedding to be compared using the 

cosine similarity as specified before. The training will be done by freezing all the convolution layers, and 

the following Hyper-parameters are used to train the model.  

 

In addition to this model that utilizes Resnet50as the CNN, a simpler model that utilizes the CNN from 

assignment 4 is used as a control to see the effect of pretraining. It is trained with the same set of 

hyperparameters as Resnet50. 

Loss function: 

In our attempt to overfit the model, it is discovered that the model quickly learned to output all zeros to 

fool the loss when using MSE or Cross Entropy. Therefore, we’ve resolved to use a linear combination of 

loss functions to ensure the model doesn’t output all zeros. 



The loss function used is a combination of Kullback-Leibler Divergence (KLDiv) loss and Binary Cross-

Entropy (BCEwithLogits) Loss. The KLDiv loss promotes the number of positive prediction while the 

BCEwithLogits promotes the overall accuracy (which tends to push the model to make all negative 

predictions). Using a linear combination of both helps maximize the F2 score. The final loss function is 

determined to be:  

𝐿𝑜𝑠𝑠 = 𝐾𝐿𝐷𝑖𝑣 + 0.1 · 𝐵𝐶𝐸𝑤𝑖𝑡ℎ𝐿𝑜𝑔𝑖𝑡𝑠  

Baseline Model: 

 

The baseline model consists of a CNN much like assignment 4. The CNN has 4 convolutional layers with 

a max-pooling layer following each. The kernel sizes are all 3x3. All max-pooling layers have size 2 and 

stride 2.  The output will simply be the one-hot-encoded hashtags. An element ≥ 0.5 gives a positive 

prediction and it gives a negative prediction otherwise. The following hyperparameters are used.   

 



Results and Discussion: 

For a multi-class multi-label classification problem with about 3000 classes such as our problem, 

accuracy on its own is not necessarily a very reliable measure of performance as the model can simply 

output all zero to full the accuracy. In our case, in addition to accuracy, the F2 score (weighted average of 

both precision and recall, with a stronger emphasis on precision) is also used. The F2 score is calculated 

with the following equation: 

𝐹2 𝑠𝑐𝑜𝑟𝑒 =
5 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

4 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Quantitative:

 

 

From the training curves, it is surprising to see that almost all the models have achieved an accuracy of 

around 90%. However, accuracy can be cheated simply by outputting all zeros. The F2 score curve of the 

models is shown below.   

 

 



The f2 score trends show that for all models, the learning stopped at very early, then the f2 score 

oscillates around the same value. Which indicates that the model is not doing much learning. 

 

From table 6, we can see that for the F2 score, the models that utilize word-embeddings have achieved a 

better result. This can be due to the fact that word-embeddings are able to create some level of abstraction 

for hashtags that generalized some hashtags to effectively reduce the number of classes the model needs 

to label. One thing that’s surprising is that the CNN trained from scratch performs better than the pre-

trained model. This might be due to the fact that Resnet is not trained on images of food. In future 

iterations, we might train the model without freezing the convolution layers. 

 

  



Qualitative:  

 

The result shows the model is able to predict some related hashtags and we can reason how those hashtags 

are determined based on the images. The model is successful to a certain degree understanding the 

common meaning between words and images. In the first example, the model recognized the women and 

the kitchen in the image, which is exclusively for this sample. It also correctly predicted the hashtag. In 

the second example, the model mistakenly thought the meat was toast while in fact, the meat does look 

like bread here. The model also correctly predicts a lot of the hashtags. Though the model may not get a 

lot of correct hashtags it does produce logically understandable results. F2 score and accuracy may not 

reflect the true effectiveness of the model. The model demonstrates some ability to interpret from the 

image and find relatable hashtags. 

  



Further Discussion: 

Besides the issue with the ambiguity of hashtags, another underlying issue the generation of hashtag 

embeddings. In our approach, we used word2vec to generate embeddings for hashtags by treating 

hashtags as words. However, hashtags and words are very different. First of all, hashtags have a much 

smaller corpus compare to words, there is simply not enough context to learn from. Secondly, a sequence 

of hashtags is not regulated by grammar and can appear in any order, therefore word2vec models that rely 

on predicting context around words would not work very well.  

Finally, by examining our dataset, we found that hashtags do not always correlate with the content of the 

image. In the two Instagram posts shown below. Though both contain images of latte art, their hashtags 

are drastically different. Therefore in future iterations, we might also take location and text description as 

inputs. 

 

 



Ethical Framework: 

One group of stakeholders for our project are Instagram users we collected the data from, which we did 

without their permission. This action does not respect the autonomy of those users as we are taking 

advantage of their content without reciprocating. It might also be maleficent if the users do not wish 

others to see their data, for example for refugees on political asylum.  

A second important group of stakeholders would be the end-users of our model, who uses our model to 

generate hashtags for their posts. This can potentially be very beneficent for those who are new to social 

media and wish to spread their message to more people, as they can use a hashtag to reach a wider 

audience, such as political activists and event promoters. However, if this is used by a large group of 

interest, it might introduce injustice. If large corporations wish to drown out the voice of their 

competitors, they can flood the feed with posts carrying the same hashtags, preventing the message of 

their competitors to be seen. In terms of nonmaleficence, it would depend also depend on who uses it, an 

authoritarian government can use our program to general tags for otherwise untagged posts and perform 

censoring.  

  



References 

[1]D. Mahajan et al., "Exploring the Limits of Weakly Supervised Pretraining", 2019. Available: 

https://arxiv.org/pdf/1805.00932.pdf. [Accessed 3 December 2019]. 

[2]"Ingramer — x2 More Effective Instagram Bot", Ingramer.com, 2019. [Online]. Available: 

https://ingramer.com/. [Accessed: 03- Dec- 2019].  

[3]"huaying/instagram-crawler", GitHub, 2019. [Online]. Available: 

https://github.com/huaying/instagram-crawler. [Accessed: 03- Dec- 2019]. 

[4]"100 Incredibly Tasty Instagram Accounts for Foodies to Follow", Photodoto.com, 2019. [Online]. 

Available: https://photodoto.com/instagram-accounts-for-foodies/. [Accessed: 03- Dec- 2019]. 

[5]"https://www.foodandwine.com", Food & Wine, 2019. [Online]. Available: 

https://www.foodandwine.com/news/best-food-instagram-accounts. [Accessed: 03- Dec- 2019]. 

[6]"The 30 Best Instagram Food Accounts You Should Be Following", BuzzFeed, 2019. [Online]. 

Available: https://www.buzzfeed.com/jesseszewczyk/best-food-instagram-accounts. [Accessed: 03- 

Dec- 2019]. 

[7]"PengFoo/word2vec-pytorch", GitHub, 2019. [Online]. Available: 

https://github.com/PengFoo/word2vec-pytorch. [Accessed: 03- Dec- 2019]. 

 

  



• permission to post video: yes 

 • permission to post final report: yes 

• permission to post source code: yes 


