

ECE324 Final Report
Andrew Wang 1003259305
Murtaza Latif 1004307065

Word Count: 2000

Penalty: 0%

Permission to post video: Wait until video seen
Permission to post final report: Yes
Permission to post source code: No

Introduction

Reddit is a platform where users can submit, view and vote on posts. Posts are prioritized by
score (calculated as "upvotes minus downvotes") and organized in subsites called "subreddits".

We specifically focused on the subreddit "AskReddit" where posts are text-only questions. Our
goal is to create a neural-net model to classify an AskReddit post into score categories based on
its content and context. In particular, we focus on binary, ternary and quinary classification as
seen below:

Table 1: Class score boundaries for binary, ternary and quinary score classification

Problem Class Score Boundaries and Names

Binary 0 - 99
 "Low"

100+
"High"

Ternary 0 - 1
 "Low"

2 - 499
"Average"

500+
"High"

Quinary 0
"Zero"

1 - 9
"Low"

10 - 99
"Average"

100 - 999
"High"

1000+
 "Viral"

Neural networks are well-suited to this task given their popularity and success in natural
language processing, the availability of data and data collection methods (scraping APIs), and
the intrinsic labelling in posts (score).

The classifier would provide a means for estimating post/advertisement popularity without
requiring users to publish content. Used as an early testing method, our classifiers could then
help industry and users alike with improving their advertising or post quality.

Illustration / Figure

Figure 1: Top To Bottom: High-level overview of data collection and training architecture, Model

Architecture, Baseline Architecture

Background & Related Work

One similar project compares the performance of Reddit comment score predictors [1]. The
article outlines data collection processes before making comparisons between regression and
tree models. Their project context is slightly different, as comment scores are often influenced
by surrounding comments, whereas new post scores are independent from other posts.
Additionally, they tackle regression (exact score) whereas we have scoped to classification.
Regardless, a useful aspect of their work (which we borrowed) was the selection of features as
input data. Since they also worked with Reddit, most of their analysis on features is transferable
to our context.

Another related work is a thesis titled Popularity Prediction of Reddit Texts [2]. The primary
takeaway is the challenges of classifying popularities in a forum where the culture is always
changing. The paper presents many prediction hurdles, including a variety of variables that
affect score regardless of post content. This work allowed us to identify important context
components such as the time and day of posting, and user selected tags ("nsfw", "serious",
"spoiler").

Data and Data Processing

Raw AskReddit post data is accumulated using the Pushshift.io API. It offers options to scrape
posts within certain score ranges and submission dates. Using this, we easily populate our class
ranges and ensure that all posts are a minimum 2 days old at the time of collection. An example
of raw, scraped posts follows:

Figure 2: Sample rows of the raw dataset for the quinary classifier for posts that fall under the score

class of 0 (zero score).

After collection, we process and filter the data to a format that better suits our model. The
filters applied to the dataset are the following:

Table 2: Types and description of filters applied to the input data

Category Description Example

String
Manipulation

Lowercase "Hello" -> "hello"

Replace numbers with nearest
order of magnitude

"123" -> "100"

Replace symbols "$" -> "dollars"

Replace common
 Reddit phrases/acronyms

"r/..." -> "subreddit"
"SO" -> "significant other"
"OP" -> "original poster"

Post Removal Remove duplicate inputs posts with the same id

Remove posts that cannot be
made by users

moderator posts

Data Enhancement Convert UNIX timestamp into
one hot encoded hour vector

"13416434124" -> "001000..."
(3:00 AM)

Convert UNIX timestamp into
one hot encoded day vector

"13416434124" -> "1000000"
(Sunday)

After the filters are applied, the datasets are balanced so each score class has an equal number
of samples. Some samples of the processed dataset are as shown in the following figure:

Figure 3: Sample rows of the cleaned dataset for the quinary classifier. Indices were included on the
left hand side of the figure to help distinguish the different data samples due to the large quantity of

parameters.

The statistics obtained include lists of frequencies for the various attributes. In Figure 4, the
histograms for the frequencies of posts over each weekday and hour are shown. The visualized
data allows us to easily identify biases, such as the higher number of posts on Friday for this
particular dataset. We also determined that the average length of a title was 8 words, hence we
decided not to create a recurrent neural net based model. Additionally, we ignored the "spoiler"
tag since we found that a negligible number of posts had it set.

Figure 4: Histograms showing the number of posts made in any particular weekday and hour.

Architecture

Our final model consists of GloVe word embedding followed by a convolutional neural network
(CNN) and then a multi-layer perceptron (MLP). This same architecture was used for all three
classification problems, but with a different number of MLP output layer neurons:

Figure 5: Depiction of number of output neurons in output layer of MLP depending on number of

prediction classes. From left to right, 2, 3 and 5 classes.

The GloVe embedding layer produces (1, 100) word vectors. The CNN uses 4 parallel
convolutional layers with outputs concatenated together. The layers have kernel sizes (k, 100),
with k = (1, 2, 3, 4) per layer respectively. They, in essence, scan across titles for phrases of
length k words. All convolutional layers use ReLu activation and max-pooling across the title.
Batch normalization and dropout are applied before concatenation with the one-hot encoded
categorical features. The final "with-context" vector is passed to a three layer MLP. The MLP
uses a Leaky ReLu activation function, batch normalization and dropout on the two non-output
layers and a Softmax output function.

Figure 6: Full model architecture with flow from left to right if not otherwise indicated. CNN kernel

sizes and MLP layer sizes indicated in brackets per module.

Both this model and the following baseline model are trained on batches using "Cross Entropy
Loss" and the "ADAM Optimizer".

Baseline Model

The baseline model follows the same structure as above. It uses a GloVe embedding layer, but
then averages the word vectors across the title. As before, context is concatenated before
passing it to an MLP. The MLP uses two layers with sigmoid activation on the input layer and a
softmax output function.

Figure 7: Baseline model architecture with flow from left to right if not otherwise indicated. MLP

layer sizes indicated in brackets per module.

Quantitative Results

The following hyperparameters were used for training the baseline model:

Table 3: Baseline model hyperparameters

Classification
Problem

Epochs Batch Size Embedding
Dimension

FC1 Size FC2 Size

Binary 100 10,000 100 64 2

Ternary 100 10,000 100 64 3

Quinary 100 10,000 100 64 5

To determine the hyperparameters used in the CNN architecture, a grid search was conducted
manually. The following hyperparameters were the final selections used to train the CNN
models.

Table 4: CNN Model hyperparameters

Classification Problem Binary Ternary Quinary

Epochs 35 35 35

Batch Size 10,000 10,000 10,000

Embedding Dims 100 100 100

Conv1 Kernels 300 300 700

Conv2 Kernels 200 200 600

Conv3 Kernels 100 200 400

Conv4 Kernels 100 100 300

Convolution Dropout 0.1 0.2 0.1

FC1 Size 300 300 300

FC1 Dropout 0.5 0.5 0.6

FC2 Size 100 100 100

FC2 Dropout 0.5 0.5 0.5

FC3 Size 2 3 5

Training/validation accuracy graphs were created for each classification problem. Note, for the
ternary and quinary case, models were overtrained to 100 epochs to illustrate the models'
ability to reach high training accuracies. Model parameters were saved at 35 epochs.

Binary Classification
 Baseline CNN Model

Figure 8: Training/validation accuracy graphs for the Baseline and CNN Model respectively in the

binary classification problem. A random guess has expected accuracy 50% (red line).

Ternary Classification
 Baseline CNN Model

Figure 9: Training/validation accuracy graphs for the Baseline and CNN Model respectively in the

ternary classification problem. A random guess has expected accuracy 33.33% (red line).

Quinary Classification

 Baseline CNN Model

Figure 10: Training/validation accuracy graphs for the Baseline and CNN Model respectively in the

quinary classification problem. A random guess has expected accuracy 20% (red line).

The final validation and test accuracies are summarized in the following graphs. A random
guesser is also included for comparison.

Figure 11: Final validation accuracies for a random guess (expected), the baseline model and the

CNN model for the three classification problems

Figure 12: Final test accuracies for a random guess (expected), the baseline model and the CNN

model for the three classification problems

The following tables are confusion matrices for each classifier:

Table 5: Confusion matrix for binary classification. "Low" corresponds to scores in [0, 99] and
"High" to scores in [100+]

Binary Truth Low Truth High

Prediction Low 13104 5113

Prediction High 4389 13466

Table 6: Confusion matrix for ternary classification. "Low" corresponds to scores in [0, 1], "Average"

to scores in [2,499] and "High" to scores in [500+].

Ternary Truth Low Truth Average Truth High

Prediction Low 4173 1066 541

Prediction Average 890 3352 1189

Prediction High 411 914 3279

Table 7: Confusion matrix for quinary classification. "Zero" corresponds to scores in [0], "Low" to
scores in [1, 9], "Average" to scores in [10, 99], "High" to scores in [100, 999] and "Viral" to scores in

[1000+].

Quinary Truth Zero Truth Low Truth Avg. Truth High Truth Viral

Prediction Zero 1981 311 163 399 136

Prediction Low 1410 1966 731 301 611

Prediction Average 550 851 3370 1009 442

Prediction High 636 1324 506 2566 605

Prediction Viral 281 620 133 1283 3053

We value the recall metric with high importance because it factors in how often we predict a
high-scoring post to have a low score. This is the worst case because the user may be dissuaded
from posting good content. For classifiers with more than two classes, we take the rate of
correctness for our model when the post’s ground-truth score is high (and viral for quinary
classifier) and denote this metric as the “True High Rate” (THR). The following table organizes
these metrics for each classifier.

Table 8: Recall and THR values per classification problem. Essentially, how often is the model
correct when the ground truth score of the post is high.

Classification Problem Random Guess Recall/THR CNN Recall/THR

Binary 50% 72.48%

Ternary 33.33% 65.46%

Quinary 20% 51.16%

The following table summarizes our results:

Table 9: Final summary of model results

Classification

Problem

Random

Guess

Baseline CNN

Validation
Accuracy

Test
Accuracy

Validation
Accuracy

Test
Accuracy

Recall or
THR

Binary 50% 78.72% 66.28% 84.29% 73.66% 72.48%

Ternary 33.33% 66.7% 52.01% 67.9% 53.48% 65.46%

Quinary 20% 48.75% 38.63% 53.89% 48.77% 51.16%

Qualitative Results

Sample outputs of the model can be evaluated using our website UI, designed to look identical
to Askreddit's post submission page.

Figure 13: Website interface for evaluating model outputs. The title of the post is input into the text

area in the middle, and the maturity rating context can be added directly below the textbox. The
classifier can be selected at the top, with the choice between a 2, 3 and 5 class model. The model is

evaluated when the ‘POST’ button is clicked.

The model's input also requires the hour and weekday context, which is taken directly from the
device running the interface before conversion to a global (UTC) hour and weekday.

Figure 14: The input into our website predictor, showing the title as “What’s your favourite food?”

and the NSFW context tag selected.

One sample input we tested was a basic question with NSFW flag on, as seen above. Normally,
this tag is used when the thread contains mature content.

Figure 15: The prediction corresponding to the input shown above in Figure 14. The post was

predicted to have a ‘low’ score, which is classified as a post with a score between 1 and 9.

In the quinary classifier, the post was predicted to have a score of between 1 and 9 as shown in
Figure 15. We posted this on the actual subreddit [3]. After 2 days, the thread had no new
activity and the score steadied.

Figure 16: Status of the Reddit post made on AskReddit made with the exact same input parameters

as the prediction. The score of the post after a couple days was 4.

Despite the odd context of the input, the thread received a score of 4, in agreement with our
prediction.

There are several types of posts that our model consistently predicts correctly. Titles without a
question mark or consisting of incomprehensible words are correctly predicted as low scoring.
This is entirely expected, as the purpose of AskReddit posts are to post questions. Take the top
scoring set of posts below for example:

Figure 17: Set of 4 hot posts on the AskReddit subreddit, each featuring a question mark at the end

of their titles.

When predicting posts we know are popular, often the result is incorrect. This can be attributed
to the fact that the same content (question), posted multiple times usually has a singular highly
scored post followed by multiple low-scored repeats. See the following post for example:

Figure 18: The same post title made with different contexts, with only one of the posts having a high

score and the rest having very low scores.

A low predicted score is reasonable, as only 1 of the posts with the same title received a high
score.

Discussion and Learnings

First consider the accuracy graphs. We can see that the Baseline Model and CNN are capable of
training for all three problems given their training accuracy curves.

Binary Baseline vs. CNN Ternary Baseline vs. CNN Quinary Baseline vs. CNN

Figure 19: Repeated accuracy graphs. This figure's purpose is to see the shape of the

accuracy curves. See figures 8, 9, 10 for full size renders.

For validation accuracy, both models easily beat the expected accuracy of a random guess and
the CNN consistently beats the Baseline. We note that the final training accuracy is 30% and
50% higher than the validation accuracy for the ternary and quinary problems respectively. This
indicates that our model overfits. To combat this overfitting, we learned and applied several
techniques including batch normalization, dropout and early stopping.

We conclude our model has generalized given its ability to classify score more accurately than
both the Baseline and a random guess on data it has never seen before. The corresponding
confusion matrices (Table 5, 6, 7) similarly reflect this conclusion, with high values along the
diagonals and increasingly smaller values away from it. This additionally indicates that our
model rarely confuses high scoring posts for low scoring ones and vice-versa. Looking at the
THR metric (Table 8) we again see our classifier vastly outperforms a random guess.

Figure 20: Repeated summarized test accuracy results.

As expected, we see that our model's absolute test accuracies (Figure 20) improve as we move
from more classes to fewer classes (quinary 48.77%, ternary 53.48%, binary 73.66%). But,
surprisingly, the models' test accuracies relative to a random guess decrease! The quinary,
ternary and binary classifiers are 2.5x, 1.65x and 1.45x more accurate than a random guess
respectively. From this lens, the model actual performs better (relative to guessing) as the
classification problem is more complex. Perhaps, each class has "easily learnable" and
"complicated" characteristics with respect to predicting score. Then, it would be easier for a
model to achieve a low accuracy per class across multiple classes than a high accuracy on a
singular class.

For future work, we hope to increase our dataset size to further reduce overfitting. Given that
we scraped all AskReddit posts (bottlenecked by posts over 1000 score), we could achieve this
using data augmentation (e.g. using synonyms for sentences). Second, we would also begin
training with GPUs. By employing GPU processing we were able to see speed ups of 400-500%,
drastically saving time.

Ethical Framework

The stakeholders of this model are Reddit's users ("redditors"), advertisers, the company
(Reddit), and model creators. We consider scenarios in which our model is accurate and used
widely.

Foremost, advertisers can predict to what degree their advertisements will be appreciated by
the Reddit community (+beneficence). Smaller businesses and studios also equally have this
opportunity. This reduces the advantages larger businesses have due to their larger budgets for
marketing and advertisement analysis (+justice). In the same vein, redditors can equally
improve their grasp on what content is "popular" through trial and error using the predictor
(+justice).

Figure 21: Positive reflexive principlism graph

Conversely, we consider negative consequences in terms of the four ethical principles.
Redditors will post content less frequently because low score predictions may dissuade them
from submitting their posts (-nonmaleficence). This decreases the amount of content posted
overall which negatively affects users' browsing experiences and hence, the site’s traffic
(-nonmaleficence).

Since Reddit is a dynamic platform (where "what's popular" changes), the model must be
frequently retrained to maintain accuracy. This invokes a computing cost for the creators and is
an economic burden (time/money), and an environmental waste (-nonmaleficence). If the

model algorithm is not open source, biases (unconscious or conscious) may be introduced,
skewing prediction results and potentially influencing certain types of posts (-nonmaleficence).
An example is predicting left-leaning content to have a lower score, effectively reducing posts
of that opinion.

The "RedditClassifier" project (Agnihotri, Mogilny 2019) has created a model to classify which
Subreddit a given post belongs to. Utilizing both our models as discriminators for a Generative
Adversarial Network (GAN), one could create a GAN capable of generating high-scoring posts
for a particular subreddit. With a good enough GAN and enough generated post submissions, a
user may see only artificial posts whilst browsing a subreddit. In this way, the GAN's creators
could direct what users see on Reddit, resulting in a loss in redditor autonomy (-autonomy).
Such a GAN could create false reports, politically skewed posts, etc. in large enough quantities
to affect the reddit user base mentality (-nonmaleficence).

Figure 22: Negative reflexive principlism graph

Project Difficulty & Model Complexity

To predict the score of a Reddit post is intrinsically difficult. First, the culture of the Reddit
community is always changing. Second, the context of a post is complex, touching on factors
like submission time, author post history, current Reddit trends, and even current societal
trends.

Given the complexity of our problem, our model performs with a good accuracy. All three of our
classifiers perform significantly better than a random guess (Figure 20). To get our models to
this level of accuracy required techniques outside of the scope of the course. Chiefly, dropout
was used to decrease the degree of overfitting and Leaky ReLu activation was used to combat
the vanishing gradient problem (given our large neural network).

References

[1] A. Reevesman, “Predicting Reddit Comment Upvotes with Machine Learning,” Medium,

09-Jan-2019. [Online]. Available:
https://towardsdatascience.com/predicting-reddit-comment-karma-a8f570b544fc

[2] T. Rohlin, “Popularity Prediction of Reddit Texts,” n.d.. [Online]. Available:

https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=8251&context=etd_theses.

[3] “r/AskReddit - What's your favourite food?,” reddit. [Online]. Available:

https://www.reddit.com/r/AskReddit/comments/e2z8k4/whats_your_favourite_food/.

https://towardsdatascience.com/predicting-reddit-comment-karma-a8f570b544fc
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=8251&context=etd_theses
https://www.reddit.com/r/AskReddit/comments/e2z8k4/whats_your_favourite_food/

