

RE-SEARCH

ECE324 Final Report

Annie Wang & Yanisa Khambanonda

November 29th, 2019

Word Count: 2000

Penalty: NULL

2

Introduction

 Online shopping has boomed in the last decade because of its convenience and

flexibility, but we see an opportunity to further improve the shopping experience for

owners and customers alike by implementing a machine learned classifier that

automatically labels inventory images. For store managers, we can replace the tedious

process of manually labelling thousands of images with a neural net classifier that can

achieve a similar accuracy while producing more detailed and standardized labels. For

the consumers, we anticipate that these standardized labels will yield more effective

search engines to improve their shopping experience.

 Classification of clothing features is a great way to apply machine learning

because features like collars and buttons are translationally invariant in images.

Furthermore, traditional methods of comparing with templates to classify is difficult

because catalog images from different stores are stylistically different. Fortunately, the

kernels of a CNN can learn these features and generalize to classify images it hasn’t seen

before. Furthermore, the abundant number of online clothing stores provide a large

source of images to obtain data samples. For the scope of this project, we focused on

classifying tops for 4 types of clothing features: color, neckline, sleeve length and the

presence of buttons.

Background

Upon researching similar applications of machine learning, we concluded that a

CNN model would be a good starting point. Based on the documented literature and

open source projects we found online, clothing image classification, and specifically

clothing feature classification appears to be a somewhat unique yet still possible

machine learning application. For reference, James Le created a model that identifies

articles of clothing using convolutional neural networks[1]. While this problem appears

simpler than our goal, it could in the future be used in conjunction with our tops-

classifier, as an initial process to categorize clothing items before trying to apply feature

classification.

A generalized approach applied differently is Davis King’s facial feature detection

model used in python’s face_recognition library[2]. This CNN model takes in images of

people and extracts information about their facial features as an intermediate step to a

facial recognition project. This model is similar to ours because they are not just trying to

detect faces, but to classify their features, like the eyes or nose. While neither of these

works exactly relate to our intended application, they are relevant motivations and

background that convince us that the task can be achieved through machine learning.

3

Illustration

The following is a summative image of the basic design of our project.

Data Collection and Processing

 The team underwent three stages to build our dataset. In stage one, we scraped

images of clothing tops from 20 online clothing stores using the searched terms as the

image label. For example, image results from searching “orange tops” would be labeled

“orange”. Through this method, we collected over 10,000 images for each of the 4

clothing features: colors, necklines, sleeve lengths and buttons, and tried to maintain a

balanced distribution of data samples in each class. Some data distribution graphs are

shown below.

4

In stage two, we cleaned the data with consideration to some constraints and

qualifications. These included images having correct labels, having the top fully visible,

and having a discernable contrast between the top and the background. Our constraints

also led to removal of full-body images, images of clothing without models, and non-top

articles of clothing. Some example exclusions are shown below.

2664
2364

1814

1066

2378

1752 1718

black white yellow orange red blue green

NUMBER OF SAMPLES:
COLORS

4260 4338 4279 4328

v-neck turtleneck crewneck square-neck

NUMBER OF SAMPLES:
NECKLINES

6869 6869 6869

long-sleeve short-sleeve sleeveless

NUMBER OF SAMPLES: SLEEVE
LENGTH

4001 4018

button no button

NUMBER OF SAMPLES:
BUTTONS

5

In stage three, data preprocessing, we first resized all the cleaned images to

100x100 pixels to standardize the samples and to reduce training time. Furthermore, we

horizontally mirrored each image for data augmentation. Next, we normalized the entire

dataset before dividing them into train, validation and test sets. Finally, we one-hot

encoded each image label. This process and a data example are shown below.

Tensor([0, 0, 1, 0, 0]) Turtleneck

6

Architecture

To build each model, we began with a basic CNN and optimized hyperparameters

differently to classify for each clothing feature. Each CNN takes in images of 100x100

pixels with RGB channels which pass through multiple convolutional layers as well as

batch normalization, dropout (sometimes) and pooling layers. Afterwards, the inputs are

passed through 2 fully connected layers with batch normalization and sometimes

dropout layers followed by a softmax or sigmoid output function. The key optimized

hyperparameters are shown below for each clothing feature CNN.

 #

Convolutional

Layers

Model

Parameters

Learning

Rate

Loss

Function

Batch

Size

Dropout

Rate

Buttons 2 212,721 0.0022 MSE 32 0.3

Colors 2 156,475 0.005 MSE 32 NA

Necklines 3 11,072 0.002 Cross

Entropy

16 0.17

Sleeves 4 3,862 0.003 Cross

Entropy

32 NA

batch_norm

dropout

max_pool

batch_norm

dropout

3x100x100 image

convolutional_layer_1

fully_connected_layer1

- relu activation

output_layer

- softmax/sigmoid

 output function

7

Baseline

In our colors baseline model, the input RGB image is flattened by averaging to a

2D image then converted into a tensor array. The tensor is then passed through a fully

connected layer with 40*40 hidden units, then a ReLU activation function. Following, the

result is passed through a second fully connected layer with an output dimension of 7,

equal to the number of color classes. Finally, we applied a softmax output function.

We adapted this model to generate baseline models for sleeves, necklines and

buttons. We changed the output dimension to equal the clothing feature’s number of

classes and used a sigmoid output function instead of softmax for classifying buttons.

Qualitative Results

After examining individual input images and their corresponding predicted labels,

we found the following common cases.

Input Image_1:

Predicted Label_1: [white, v-neck, short sleeves, buttons]

The image was classified completely correctly. We found that our classifier

performed very well with images where the model’s body was directly facing the camera

and all edges of the clothing top were clearly visible.

8

Input Image_2:

Predicted Label_2: [red, square neck, sleeveless, no buttons]

Here, the image was classified partially correctly. This neckline type was not

technically encompassed in our classes and the sleeve length was predicted incorrectly.

This top is “off the shoulder”, which creates a flat neckline type we did not train for, and

therefore is an example of a limitation of our model. We deduce that the classifier

predicted sleeve length incorrectly because an important characteristic of sleeveless

tops is that the shoulder is exposed. While the shoulder is exposed here, there are still

sleeves, possibly causing the classifier to get confused and predict incorrectly.

9

Input Image_3:

Predicted Label_3: [green, v-neck, long sleeves, buttons]

Here, the image was classified mostly correctly. Buttons were found on the bottoms

worn by the model, but not on the top, possibly causing the classifier to make a false

positive prediction.

10

Quantitative Results

Below are the confusion matrices and accuracy plots for our final models. We chose

these quantitative measures since confusion matrices provide valuable information on

which classes the model performs best/worst with, which helps us analyze ways to

improve it; furthermore, accuracy plots give insight on the progress of our model

throughout the training, and on whether our model is overfit.

COLOURS

SLEEVES

COLOURS

Bl
ac

k

Bl
ue

G
re

en

O
ra

ng
e

Re
d

W
hi

te
Ye

llo
w

265 0 1 0 0 1 0Black

5 160 5 0 0 6 0Blue

0 1 149 0 0 2 16
Green

0 1 0 103 1 1 2
Orange

1 0 0 19 219 0 0

1 0 2 0 0 234 0

Red
White

0 0 2 1 0 5 174
Yellow

SLEEVES

Lo
ng

Sh
or

t

Sl
ee

ve
le

ss

658 21 7Long

52 604 30Short

19 44 623
Sleeveless

11

NECKLINES

BUTTONS

NECKLINES

Cr
ew

Sq
ua

re

Tu
rt

le

V

293 31 66 47Crew

35 353 7 37Square

51 19 347 16Turtle

35 36 18 337

e

V

12

Discussion & Learning

Based on the results above, we were genuinely surprised with how well our

model performed. The confusion matrices and sample outputs revealed that often,

incorrect results are reasonably justified, or the source of confusion makes sense.

Comparisons to results of the baseline and a random predictor reveal that our models

perform significantly better.

Through this experience we learnt a lot about the best practices for collaborative

engineering work – especially about collaboration on code, the end-to-end processes of

a machine learning engineer. Given a future opportunity, there are a few things we

would change. For one, we realized a market survey or additional research on the target

market and the topic would be useful to gain additional insights. In our case, this would

include doing more research on popular clothing features to ensure our chosen classes

and categories are relevant and useful. We would have also wanted to automate some of

our processes from the start including the use of scripts to perform our hyperparameter

grid searches. We were also amazed by how much faster our training process was after

switching to using CUDA on gpu and wish we had realized this sooner.

As an extension to the project we would have also wanted to expand our scope to

include other clothing types or styles. While we think the project is important and useful,

it appears we would need to put in more work to widen the scope enough to handle

integration into a real clothing store.

13

Ethical Framework

The main stakeholders to this project include shopping customers, store

managers/workers, fashion designers and clothing models. Given our project is

implemented by real clothing companies there are some ethical concerns to be aware of.

When placing our project on the reflexive principlism plane we considered it to be

more towards the autonomy and beneficence axes. A clothing image classifier can

produce more accurate and detailed image tagging without the efforts and costs of

manual labelling, resulting in a better search engine experience for the end user. This is

mostly beneficial to customers and the clothing store since there is a better customer

experience for limited costs. Thus, we placed RE-SEARCH more towards beneficence

than nonmaleficence. However, another consequence of our standardized tagging is

some autonomy within the search results since our search engine would return results in

which our model’s confidence is maximized for the classification. This means clothing

images that are easier for our model to classify will be prioritized more often. This may

also possibly encourage/influence fashion designers to create designs in a more

standardize way causing autonomy in the fashion industry. Furthermore, its arguable

that by automating the clothing feature tagging process, we are taking away manual

labour jobs from store workers.

14

Reflection

One of the biggest challenges for this project was data acquisition, since we

created our entire labelled dataset from scratch. This was a tough task since it involved

scraping 20 online stores to gather over 60,000 image samples. Furthermore, to ensure

confidence in the quality of our dataset, we had to manually verify the labels to give our

models the best shot at a success. In addition to the data collection, we performed data

augmentation techniques to generate more data for lacking classes in attempts to create

an evenly distributed dataset. In addition to the data, we decided to create 4 separate

ML models, for which hyperparameters were individually optimized for.

Reflecting on the outcome of our project, we were pleasantly surprised with the

~80%+ accuracies that we achieved on each model, and their performances in

comparison to a random classifier. Beyond the requirements, we also created a database

that automatically stores classified labels and images, as part of our functional web

application that demonstrates the use case of our project. Through building our

database, customer “search engine” prototype and real-time image classification web

interface, we also learnt practical skills in SQL, and web development. Lastly, we would

like to thank Professor Rose and his team for all their guidance and insights during this

project.

Permissions:

Both members: Yanisa Khambanonda and Annie Zhuoer Wang grant permission to post the

following on a course website:

• Video

• Final report

• Source Code (master branch)

Resources:

[1] J. Le, “How to Classify Fashion Images Easily Using ConvNets”, Nanonets, 2018. [Online], Available:

https://nanonets.com/blog/how-to-classify-fashion-images-easily-using-convnets/ [Accessed Oct 25,

2019].

[2] A. Geitgey, “face_recognition”, Github, Nov 15, 2019. [Online], Available:

https://github.com/ageitgey/face_recognition [Accessed Nov 27, 2019].

https://nanonets.com/blog/how-to-classify-fashion-images-easily-using-convnets/
https://github.com/ageitgey/face_recognition

