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Introduction 

 Online shopping has boomed in the last decade because of its convenience and 

flexibility, but we see an opportunity to further improve the shopping experience for 

owners and customers alike by implementing a machine learned classifier that 

automatically labels inventory images. For store managers, we can replace the tedious 

process of manually labelling thousands of images with a neural net classifier that can 

achieve a similar accuracy while producing more detailed and standardized labels. For 

the consumers, we anticipate that these standardized labels will yield more effective 

search engines to improve their shopping experience. 

 Classification of clothing features is a great way to apply machine learning 

because features like collars and buttons are translationally invariant in images. 

Furthermore, traditional methods of comparing with templates to classify is difficult 

because catalog images from different stores are stylistically different. Fortunately, the 

kernels of a CNN can learn these features and generalize to classify images it hasn’t seen 

before. Furthermore, the abundant number of online clothing stores provide a large 

source of images to obtain data samples. For the scope of this project, we focused on 

classifying tops for 4 types of clothing features: color, neckline, sleeve length and the 

presence of buttons.  

Background 

Upon researching similar applications of machine learning, we concluded that a 

CNN model would be a good starting point. Based on the documented literature and 

open source projects we found online, clothing image classification, and specifically 

clothing feature classification appears to be a somewhat unique yet still possible 

machine learning application. For reference, James Le created a model that identifies 

articles of clothing using convolutional neural networks[1]. While this problem appears 

simpler than our goal, it could in the future be used in conjunction with our tops-

classifier, as an initial process to categorize clothing items before trying to apply feature 

classification.  

A generalized approach applied differently is Davis King’s facial feature detection 

model used in python’s face_recognition library[2]. This CNN model takes in images of 

people and extracts information about their facial features as an intermediate step to a 

facial recognition project. This model is similar to ours because they are not just trying to 

detect faces, but to classify their features, like the eyes or nose. While neither of these 

works exactly relate to our intended application, they are relevant motivations and 

background that convince us that the task can be achieved through machine learning. 
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Illustration 

The following is a summative image of the basic design of our project. 

 

 

Data Collection and Processing  

 The team underwent three stages to build our dataset. In stage one, we scraped 

images of clothing tops from 20 online clothing stores using the searched terms as the 

image label. For example, image results from searching “orange tops” would be labeled 

“orange”. Through this method, we collected over 10,000 images for each of the 4 

clothing features: colors, necklines, sleeve lengths and buttons, and tried to maintain a 

balanced distribution of data samples in each class. Some data distribution graphs are 

shown below. 
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In stage two, we cleaned the data with consideration to some constraints and 

qualifications. These included images having correct labels, having the top fully visible, 

and having a discernable contrast between the top and the background. Our constraints 

also led to removal of full-body images, images of clothing without models, and non-top 

articles of clothing. Some example exclusions are shown below. 
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In stage three, data preprocessing, we first resized all the cleaned images to 

100x100 pixels to standardize the samples and to reduce training time. Furthermore, we 

horizontally mirrored each image for data augmentation. Next, we normalized the entire 

dataset before dividing them into train, validation and test sets. Finally, we one-hot 

encoded each image label. This process and a data example are shown below. 
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Architecture  

To build each model, we began with a basic CNN and optimized hyperparameters 

differently to classify for each clothing feature. Each CNN takes in images of 100x100 

pixels with RGB channels which pass through multiple convolutional layers as well as 

batch normalization, dropout (sometimes) and pooling layers. Afterwards, the inputs are 

passed through 2 fully connected layers with batch normalization and sometimes 

dropout layers followed by a softmax or sigmoid output function. The key optimized 

hyperparameters are shown below for each clothing feature CNN. 

 # 

Convolutional 

Layers 

# 

Model 

Parameters 

Learning 

Rate 

Loss 

Function 

Batch 

Size 

Dropout 

Rate 

Buttons 2 212,721 0.0022 MSE 32 0.3 

Colors 2 156,475 0.005 MSE 32 NA 

Necklines 3 11,072 0.002 Cross 

Entropy 

16 0.17 

Sleeves 4 3,862 0.003 Cross 

Entropy  

32 NA 
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Baseline 

In our colors baseline model, the input RGB image is flattened by averaging to a 

2D image then converted into a tensor array. The tensor is then passed through a fully 

connected layer with 40*40 hidden units, then a ReLU activation function. Following, the 

result is passed through a second fully connected layer with an output dimension of 7, 

equal to the number of color classes. Finally, we applied a softmax output function. 

We adapted this model to generate baseline models for sleeves, necklines and 

buttons. We changed the output dimension to equal the clothing feature’s number of 

classes and used a sigmoid output function instead of softmax for classifying buttons. 

 

Qualitative Results  

After examining individual input images and their corresponding predicted labels, 

we found the following common cases. 

Input Image_1: 

 

Predicted Label_1: [white, v-neck, short sleeves, buttons] 

The image was classified completely correctly. We found that our classifier 

performed very well with images where the model’s body was directly facing the camera 

and all edges of the clothing top were clearly visible. 
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Input Image_2: 

 

Predicted Label_2: [red, square neck, sleeveless, no buttons] 

Here, the image was classified partially correctly. This neckline type was not 

technically encompassed in our classes and the sleeve length was predicted incorrectly. 

This top is “off the shoulder”, which creates a flat neckline type we did not train for, and 

therefore is an example of a limitation of our model. We deduce that the classifier 

predicted sleeve length incorrectly because an important characteristic of sleeveless 

tops is that the shoulder is exposed. While the shoulder is exposed here, there are still 

sleeves, possibly causing the classifier to get confused and predict incorrectly. 
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Input Image_3: 

 

Predicted Label_3: [green, v-neck, long sleeves, buttons] 

Here, the image was classified mostly correctly. Buttons were found on the bottoms 

worn by the model, but not on the top, possibly causing the classifier to make a false 

positive prediction. 



10 
 

Quantitative Results  

Below are the confusion matrices and accuracy plots for our final models. We chose 

these quantitative measures since confusion matrices provide valuable information on 

which classes the model performs best/worst with, which helps us analyze ways to 

improve it; furthermore, accuracy plots give insight on the progress of our model 

throughout the training, and on whether our model is overfit.  
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Discussion & Learning  

Based on the results above, we were genuinely surprised with how well our 

model performed. The confusion matrices and sample outputs revealed that often, 

incorrect results are reasonably justified, or the source of confusion makes sense. 

Comparisons to results of the baseline and a random predictor reveal that our models 

perform significantly better.  

Through this experience we learnt a lot about the best practices for collaborative 

engineering work – especially about collaboration on code, the end-to-end processes of 

a machine learning engineer. Given a future opportunity, there are a few things we 

would change. For one, we realized a market survey or additional research on the target 

market and the topic would be useful to gain additional insights. In our case, this would 

include doing more research on popular clothing features to ensure our chosen classes 

and categories are relevant and useful. We would have also wanted to automate some of 

our processes from the start including the use of scripts to perform our hyperparameter 

grid searches. We were also amazed by how much faster our training process was after 

switching to using CUDA on gpu and wish we had realized this sooner.  

As an extension to the project we would have also wanted to expand our scope to 

include other clothing types or styles. While we think the project is important and useful, 

it appears we would need to put in more work to widen the scope enough to handle 

integration into a real clothing store.  
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Ethical Framework  

The main stakeholders to this project include shopping customers, store 

managers/workers, fashion designers and clothing models. Given our project is 

implemented by real clothing companies there are some ethical concerns to be aware of.  

When placing our project on the reflexive principlism plane we considered it to be 

more towards the autonomy and beneficence axes. A clothing image classifier can 

produce more accurate and detailed image tagging without the efforts and costs of 

manual labelling, resulting in a better search engine experience for the end user. This is 

mostly beneficial to customers and the clothing store since there is a better customer 

experience for limited costs. Thus, we placed RE-SEARCH more towards beneficence 

than nonmaleficence. However, another consequence of our standardized tagging is 

some autonomy within the search results since our search engine would return results in 

which our model’s confidence is maximized for the classification. This means clothing 

images that are easier for our model to classify will be prioritized more often. This may 

also possibly encourage/influence fashion designers to create designs in a more 

standardize way causing autonomy in the fashion industry. Furthermore, its arguable 

that by automating the clothing feature tagging process, we are taking away manual 

labour jobs from store workers. 
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Reflection  

One of the biggest challenges for this project was data acquisition, since we 

created our entire labelled dataset from scratch. This was a tough task since it involved 

scraping 20 online stores to gather over 60,000 image samples. Furthermore, to ensure 

confidence in the quality of our dataset, we had to manually verify the labels to give our 

models the best shot at a success. In addition to the data collection, we performed data 

augmentation techniques to generate more data for lacking classes in attempts to create 

an evenly distributed dataset. In addition to the data, we decided to create 4 separate 

ML models, for which hyperparameters were individually optimized for.  

Reflecting on the outcome of our project, we were pleasantly surprised with the 

~80%+ accuracies that we achieved on each model, and their performances in 

comparison to a random classifier. Beyond the requirements, we also created a database 

that automatically stores classified labels and images, as part of our functional web 

application that demonstrates the use case of our project. Through building our 

database, customer “search engine” prototype and real-time image classification web 

interface, we also learnt practical skills in SQL, and web development. Lastly, we would 

like to thank Professor Rose and his team for all their guidance and insights during this 

project. 
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