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Introduction

The goal of this project is to predict the outcome of DotA2 matches. Dota2 is a popular esports game
where two teams of five human players (teams are known as ‘Radiant’ and ‘Dire’) play against each
other and one of the team will finally win.

The most critical factor in winning a DotA game is the players’ skill and performance. However, this is
hard to predict as it varies from match to match even for the same player. We are interested in how
“hero” picks will influence the winning chances for each team. Before a game starts, each of ten players
pick a unique character, knowns as “hero,” to play for that match. There are 117 heroes in total, and
once a hero is picked in a game, it cannot be picked again. Each hero has unique abilities, making some
heroes synergize with each other, and certain heroes exploit certain heroes’ weaknesses. The stage of
picking heroes is thus essential for winning a game and fascinating to investigate.

The project is split into two parts. The first part predicts the winning team with hero picks only. With the
result, a hero suggestion tool is created to suggest picking the 10th hero that can optimize the winning
probability for the team, given the other nine picked heroes.

For the second part, two more early-game features — gold and experience — are added along with the
hero picks to make outcome prediction. Heroes gain gold and experience in various ways during the
match (e.g., killing enemy heroes) and therefore empower themselves. We take heroes’ gold and
experience at the 5-minute mark to use as initial measurements of human performance. We are aiming
to increase our accuracy by adding the human factor.

We decided that neural network is an appropriate tool since there are many synergies and counters
between heroes during the picking phase. “Gold” and “experience” also contribute to the winning
chance of teams during mid-game, but the extent depends on the heroes picked on each team. For
example, some heroes are extremely strong early-game but weak late-game, so even if a team with such
heroes have a reasonable gold advantage at 5 minutes, it is probable for them to lose the game if they
do not “close-out” on the game soon. It is interesting to see if neural nets can “detect” these
relationships and make accurate predictions.

Background and related work

We have found several existing works on predicting the DotA2 match outcomes. A notable one is Andrei
Apostoae's 'Dota2-predictor' [1], which is a prediction tool constructed for the same purpose with our
first part. Besides the hero picks, he also uses a particular data preprocessing, which defines a new
feature representing the relation (synergy and counter) between the heroes. Using logistic regression,
he achieved 60% accuracy. He also reported that NNs achieved similar accuracy, although details/source
code was not given. He was using data from an older version of the game while we were motivated to
see if we can produce similar or better results using data from the newest version.
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Data and data processing
Part 1

Collection
We collected and cleaned data on 100k matches using OpenDota's API [2].

We used the "publicMatches" call method from the opendota API. Each call provides us with 100
matches' data in the form shown in Figure 1. From each call, we found the matches that meet our
requirements (shown in Figure 2) and add the match data to our dataset.

We restricted our match data to "Ranked," "All Pick" matches where the average "MMR" of players is
more than 4500. To explain: "MMR," or match-making rating, is a numerical rating of the player's skills.
4500 is ~5% of the players' skills. "MMR" is gained and lost during "ranked" game modes, where the
players with similar "MMR" (skill) are put in the same match, and the winning team of each game gain
MMR. "All Pick" is a game lobby type where all heroes are available for picking, reducing random factors
in other game modes where players can only choose from limited heroes.

By setting the above constraints, we ensure that the two teams are relatively balanced and have
relatively high skills. During data collection, only the data satisfying the constraints were recorded.

curr_id = curr_ma

curr matches = curr

nd . concat([matches, curr_matches]

Processing

After initial data analysis, we found some
outliers in class ""Game Duration" which
represents the game playing time. We
removed games with duration less than 20
minutes because these games were likely
extremely one-sided due to player(s) using an
account with less "MMR" than their actual
skills. We also balanced the number of games
based on class "Radiant_win" to have equal
numbers of data for the two different game
results. There are around 90k samples after
processing.
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Figure 3 Sample Data




To use the data in our NN, we converted each team formation feature to a 1x129 one-hot vector, where
value 1 represents the team picks the hero and 0 otherwise. Then we snitched the two vectors for each
team together and resulted in a 1x258 vector with ten "1" s for our input. The "radiant_win" column was
converted to the labels 1 (for True) and 0 (for False).We used 80% data for training, 14% for validation
and 6% for test data.

Part 2

Collection

We used the dataset from Kaggle [2], and
the raw data consists of 120 features. We
initially planned to collect data by
ourselves, but when running on our own
collected matches, only ~10% of matches

match id

count

mean

std

had in-game data specific to time. Testing
results showed that the data we were
able to collect are insufficient to show

results.

Cleaning 181024 ¢
For our model input, we used the gold earn 1123.:
and experience difference between the std 404

teams at the 5-minute mark in addition to
the heroes picked. We calculated the
value by subtracting the total
gold/experience on team dire from the
total gold/experience from team radiant.
The hero indices are treated the same
from part 1.

Figure 4 Data Summary for the sample data



Data analysis

Below is some analysis for input data to provide an overview about how these data is related to game

result.

Part 1

We first calculated the average win rate for each
hero. From the plot, we can see the hero’s win
rate is between 40% to 60%, which is typical for a
well-balanced game. However, hero win-rates
can differ by 20%, suggesting that hero picks are
indeed important.
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each hero when facing against other
heroes and store the value into a matrix.
Each entry of the matrix represents the
win rate of the hero against another
based on our collected data. Most of the
win rate is still between 40%- 60%, but
some are above 70%. That means one
hero can be ‘a counter’ of another one,
and picking counter can increase the win
probability for his team. Therefore, hero
selections can be an essential factor in

the winning chances of a team.
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Part 2

We plotted 1k samples of the gold and experience differences between two teams under two
circumstances: Radiant team winning (Blue lines) and loss (Green). The average difference for both
circumstances is marked (red and purple) in the graph. The two graphs show the same pattern, and it is
evident that the blue lines are overall slightly higher than the green ones, which means that
gold/experience differences are greater when Radiant team wins. The average value for the winning
case is above zero, while the other is below. It follows the intuition that if Radiant team has more gold
than the opponent team (positive gold difference), it has a higher chance to win. Moreover, the higher
gold difference will lead to a higher winning probability.
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Figure 7 Gold differences between two teams



Experience Difference between two teams
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Figure 8 Experience differences between two
teams

From the two graphs, we can state that gold and experience are features that do influence a game
result. Furthermore, adding the gold/ experience difference as our input may result in a more accurate
output.




Architecture

We used Multi-layer perceptions for both parts, as our data is simply labels and numbers. Our input data
only contains 229 category classes (ten hero picks) for part 1 and two continuous class (gold/experience)
added for part 2. We used hidden layers to help our network ‘learn’ the relationship between the
features and outcome. Moreover, output data is a win probability for the Radiant team.

Below are the architecture diagrams for each part. We selected the layers from testing.

Part 1
2 fully connected hidden layers with 50 and 10 neurons, each followed by Relu function. Activation
function used for output is sigmoid (to convert the output to a probability),
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Figure 9 Model diagram for part |



Part 2
There is one hidden layer with 50 neurons followed by a Relu function and a output layer
followed by a Sigmoid function.
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Figure 9 Model diagram for part Il

Baseline model

We used Logistic regression as our baseline model. Logistic regression predicts the probability of a
categorical dependent binary variable as a function of the input variable. It is simple to implement with
Pytorch using one linear layer followed by ‘softmax’ function. The ‘softmax’ is an activation function that
will turn the input into probabilities sum to one. In our case, the model will finally output two prediction
values, each representing the probability of the winning/losing for the radiant team. Since our label is
either 1 or 0, we can say a prediction is correct if the outcome with higher probability matches the label.
Also, we used the Cross-Entropy Loss function to calculate the loss and train the baseline model to get a
proper result. Logistic regression is a suitable baseline model because it can predict a probability that is
comparable with our label, and it can efficiently deal with a large amount of input data. Moreover, the
model is simple, fast, and is guaranteed to output a reasonable outcome according to the background
research we did previously.



Results and Discussions

Part 1 (Quantitative)

We were able to achieve 56% testing accuracy while overfitting on the training set and using early
stopping. Although this result can seem unsuccessful (only 6% more than randomly guessing: making a
prediction “1” for all data will achieve 50% accuracy), it is reasonable because player performance plays
a more crucial part of the game. Our results showed that hero picks alone can influence the game
outcome, making us able to build the hero suggestion tool.
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Figure 10 Accuracy vs Epochs Figure 11 Training Loss vs Epochs

Comparing to the baseline model it performed ~1% better; but comparing to previous works it was not
working as well as expected. This is likely due to our constraints set while collecting data.

Hero Suggestion (Qualitative)

Using our best model in part 1, we wrote a win predictor and a hero suggestion tool. Using a dictionary
storing the corresponding hero indices to names, the win predictor returned the model’s prediction
using hero names as inputs.

The suggestion tool uses the nine heroes picked in-game and suggests picks for the 10th hero. The
progress was made by running the model on all possible picks and returning the three heroes with the
top predicted win probability.



Part 2 (Quantitative)

Adding the gold and experience difference for input, we achieved a test accuracy of 64%. We were also
able to overfit on training data and did early-stopping. This shows that with some measurement of
player performance during the early/mid-game, the outcome can be more accurate. This result can be
possibly utilized to predict game outcomes during mid-game.

Accuracy vs. Epochs Training Loss vs. Epochs
0.70 A
0.65
0.68 - 0.64
> —— Training
E Validation 2 0.63
E 0.66 1 — test 3
0.62 1
0.64 -
0.61
0.62 -
(I) 2I =Il é !I3 lll) 0.60 T T T T T T

0 2 4 6 8 10

Number of Epochs
Number of Epochs

Figure 12 Accuracy vs Epochs Figure 13 Training loss vs Epochs

Lessons

Our project is quite simple in architecture; data collection was the most difficult part. If starting a similar
project, we would do more preliminary data analysis and propose a project that is expected to produce
better results (we expected test accuracy to be ~60%), while using a more complex architecture
(multiple CNNs, RNNs, etc.).



Ethic Framework

Considering players as stakeholders, we analyze the ethics of our hero suggestion/game prediction tool
with reflective principlism:

Beneficence: Our hero suggestion tool can be used as a side consideration for hero-picking when players
play DotA2.

Autonomy: If players are likely to follow the suggestion tool, it will limit their thoughts on hero-picking;
creating ideas on hero synergies and counters is an enjoyable part of the game. Using the tool might
restrict the players’ freedom on establishing, or even creating their ideas.

Justice: The project can potentially make the game unbalanced. The prediction tool can benefit players
who use them but may not be fair to those who refuse to use it. There is often no clear line between
using an aiding tool and cheating in multiplayer video games.

Nonmaleficence: This project can minimize the risk of players (especially new players) to pick
heroes that are weak for the game. It is often happening on new players or players in lower rank tiers.
Our tool may limit the risks of them doing so.
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