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Introduction 
The goal of this project is to build a neural network that can win 50% of battles in the game 
of Pokemon. First, we will explain the mechanics of the game. Essentially, two competing 
trainers take turns deciding on one of four moves that their respective Pokemon can 
perform. The choice of Pokemon and their moveset are determined before the match 
begins. Each trainer seeks to reduce the health of the opponent’s Pokemon to zero, and 
must strategically decide on a move depending on the conditions of the turn. As illustrated 
in Figure 1, they may choose the status move ​Will-O-Wisp ​to burn the opponent and reduce 
their health every turn for the rest of the battle by an incremental amount rather than 
Shadow Sneak​ which inflicts greater damage for a single turn. 

 
Figure 1: Screenshot of Pokemon Battle 

To win 50% of battles, we developed a neural network to play a specified Pokemon with 
four moves. A neural network fits the task because it can accurately process a turn’s 
numerous conditions. Using ideas from reinforcement learning, the neural network will 
learn from previously played battles. 
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To measure the performance of our neural network, we played on the online platform 
Pokemon Showdown against human players. Attracting over 100 000 players a day, we 
need to evaluate the performance of a neural network against human players and develop 
a practice tool for players. 

Related Work 
In this section, we describe an AI that plays Pokemon from the paper ​Optimal Battle Strategy 
in Pokemon using Reinforcement Learning​[1] 

While the authors of this paper shared our view of reducing the opposing Pokemon’s 
health to zero,  they also sought to “maximally retain[ing] the health of their Pokemon.'' To 
achieve this, they decided to use a model-free approach Q-learning, in which Q-values are 
assigned to each of the four moves. The AI has a 90% chance of selecting the move with the 
highest Q-value and a 10% chance of selecting a random move. Q-values were adjusted by 
rewarding the moves that resulted in wins or having greater health than the opponent and 
punishing moves that resulted in losses or having lower health than the opponent.  With 
this Q-Learning model, the authors won 60% of matches. We were inspired by this work 
when we created labels that represent the optimal move. For instance, if we lost, we would 
reduce the used move’s ​F-value​ (measures favourability to use the move) and increase the 
F-value of the other three moves by random amounts.  

Models 
We developed a baseline model that greedily selects the maximum damage move against a 
specific Pokemon. Since the greedy choice is not always globally optimal,  we built the 
work-smart model to train on the battle data and learn from wins and losses. 

Our final work-smart neural network model architecture consists of 3 layers: input, hidden, 
and output. By normalizing and one-hot encoding the features, we need 43 neurons in our 
input layer. The input data is processed by 20 neurons in the hidden layer. The output layer 
has four neurons that correspond to the favourability of using a particular move. The 
model plays the move with the greatest F-value.  
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Figure 2: Neural Network Architecture 

The neural network was trained with the following hyperparameters: 

- Optimizer: Adam Optimizer  
- Loss function: BCEwithLogits 
- Batch-size: 995 
- Learning Rate: 0.1 
- Epochs: 50 

The work-smart model has four new hyperparameters, α, β, γ, and Δ, further described in 
the data section. In this process we rewarded victories by increasing the maximum F-value 
move by a factor α and increasing/decreasing the F-value​ ​of the other moves by a factor β; 
we punished losses by decreasing the maximum F-value move by a factor γ and increasing 
the F-values of other moves by a factor Δ.  

For our smart model we used the following hyperparameters: 

● α = 1.15 

● β = 0.85 

● γ = 0.85 

● Δ = 1.15 
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Illustration/Figure 

 
Figure 3: Project Diagram 
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Initially, the baseline is trained to select the maximum damage move. This model played on 
the Pokemon Showdown servers against human players to collect data about the 
opponent, the moves used and the result win/loss. The game data was then processed to 
generate new labels for the model’s iterative training. 

Data 
We used one dataset for the baseline and another for the work-smart model. Both models 
received inputs consisting of stats (numerical data) and types (categorical data) by parsing a 
text file. Below is an entry for the Pokemon ​Bulbasaur: 

 

Figure 4: Information about Bulbasaur. 

Stats are numerical data that describe the battling capability of the Pokemon. For instance, 
the attack stat correlates with how well it deals damage, while the defense stat indicates its 
resistance to damage. As numerical data, it was normalized with the following equation: 

 z =  σ
X−μ  

Type effectiveness is another important concept in Pokemon, analogous to the hierarchy in 
rock-paper-scissors. For example, a fire-type Pokemon can easily defeat grass-type 
Pokemon. As categorical data, types are one-hot encoded. 
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Figure 5: Stats Figure 6: Types 

Together, the numerical and categorical data feeds 43 inputs to the neural network. The 
label is a one-hot encoded 4-dimensional vector corresponding to the moves: Outrage, 
Rock Slide, Iron Tail, and Superpower.  

For the baseline, we calculated the maximum damage move and assigned it the label of 1, 
assigning all other moves a label of 0. 

For the “work-smart” model, the features are identical to the baseline, however, the label is 
modified with battle data. The battle data was cleaned to remove incomplete games and 
duplicate moves. After cleaning, the battle data consists of the opponent’s Pokemon, the 
move used, and the result of the battle. 

 
Figure 7: Cleaned Battle Data 
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If we won, we rewarded the choice using the equation: 

label = move*ɑ + move’*β + move’*r  

Where: 
label ​-  4-dimensional vector consisting of the F-values of each move 
move ​- 4-dimensional vector with best move initialized as 1and 0 otherwise 
move’ ​- 4-dimensional vector with a 0 for the current best move and 0.09 otherwise 
ɑ, β  ​-   scalar hyperparameters 
r -  4-dimensional vector with random values between 0 and 0.01 

If we lost, we punished the choice using the equation: 

label = move*γ + move’*Δ + move’*r  

Where: 
γ, Δ - hyperparameters 

Results 
As described in our introduction, we aimed to develop a neural network to surpass a 50% 
win rate.  

However, we would also like to understand why our neural network won or lost a battle. 
We cannot use ideas such as sensitivity, precision, or confusion matrices because our labels 
are an estimate of the best move. Instead, we examine relationships in battle data. Since 
battles are won or lost based on the move, it is imperative to know its frequency with 
respect to the number of wins/losses and the frequency of the opponent’s Pokemon. 

In our project, we deployed four work-smart models that had different hyperparameters 
for the labelling equation. 

Table 1: Selection of Hyperparameters for Four Work-Smart Models. 

 

Model Name  α   β  γ  Δ 

Model1  1.1  1.01  0.95  1.05 

Model2  1.2  1.01  0.9  1.1 

Model3  1.1  0.9  0.9  1.1 

Model4  1.15  0.85  0.85  1.15 
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We obtained a holistic measure of performance by looking at the number of wins and 
losses for each model in Table 2. 

Table 2: Win/Loss Information for Each Model. 

 

Model Type  Model Name  Win  Loss  Win Rate 

Baseline  Baseline  529  534  0.498 

Work-smart  Model1  41  77  0.347 

Model2  54  92  0.370 

Model3  73  99  0.424 

Model4  70  85  0.452 

 

Concentrating on the analysis of our most successful models:  baseline and Model4, we 
compare the number of times each move is used based on the battle data collected by the 
baseline. 

 

Table 3: Number of Times a Move is Used by the Baseline and Model4.  

 

Move  # of times used by baseline  # of times used by Model4 

Outrage  484  329 

Superpower  383  356 

Iron Tail  99  101 

Rock Slide  40  100 

 

Model4 uses a much evener distribution of moves after training on new labels.  

Depending on the distribution of opponent Pokemon, we expect a corresponding optimal 
distribution of moves. In the next table, we observe the relationship between the 
opponent’s Pokemon with the number of wins/losses. 
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Table 4: Top 6 Frequently-Appearing Pokemon and Outcome of Match for Baseline. 
In this dataset, the baseline has battled 203 different Pokemon. 

 

Pokemon  Move Used  # of wins   # of losses 

Gyrados  Outrage  7  35 

Greninja  Superpower  19  12 

Charizard  Rock Slide  15  12 

Donphan  Outrage  2  21 

Slaking  Superpower  1  20 

Aegislash  Outrage  1  18 

 

Model4 encountered a different set of frequent Pokemon in their dataset. But we would 
like to highlight the different moves chosen by each model. 

Table 5: 6 Most Frequently-Appearing Pokemon and Corresponding Move Used. 

 

Pokemon  Move used by Baseline  Model used by Model4 

Gyrados  Outrage  Superpower 

Greninja  Superpower  Superpower 

Charizard  Rock Slide  Rock Slide 

Donphan  Outrage  Outrage 

Slaking  Superpower  Superpower 

Aegislash  Outrage  Superpower 

Discussion and Learnings  
We were surprised that the baseline had the highest win rate of 49.8% and was 

closely followed by Model4 at 45.2%. The work-smart model was unable to learn effectively 
from the baseline battle data with our approach to achieve the desired 50% win rate. 
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From table 5, Model4 has some changes in the move label compared to the 
baseline. The change from using the move​ Outrage​ to ​Superpower​ against the Pokemon 
Gyarados ​was an improvement since it can change its type to become weak to ​Superpowe​r. 
Although changing the move against the Pokemon ​Aegislash​ from ​Outrage​ to ​Superpower​ is 
unwise because Aegislash is unaffected by Superpower.  

Comparing the results in table 2 with the hyperparameter values in table 1, we find 
that models with a β value above 1 have poor performance. Since the modifiers for ​move’ 
are always positive, the label switches from the most damaging move to a new move easily, 
resulting in many suboptimal changes. 

Unfortunately, the release of ​Pokemon Sword and Shield​ broke our script and 
hindered data collection. It also forced us to play on smaller servers with long wait times, 
and more experienced players. This was a large setback for us because we were unable to 
collect a sufficiently large dataset conducive for a higher win rate. 

In the future, we would run the models and data collection scripts when Pokemon is 
not releasing a new update. This way, we play the models in a consistent environment. We 
would also replace our baseline neural network with a lookup table for data collection. 

Ethical Framework 
While artificial intelligence has far surpassed humans in games like Go and Starcraft; 

we lack ethical consideration. The main stakeholders, in this case, are the Pokemon players, 
developers, and administrators. 

We consider reflexive principlism through each stage: data collection, model use 
and impact in society. 

1. Data Collection: ​We infringe on the autonomy of human players by collecting their 
data without their consent. This process is maleficent as players lose enjoyment in 
facing a neural network that repeats its strategy[2]. Players may quit Pokemon 
Showdown while we collect data. 

2. Model use: ​Based on online messages, repeated matches with our​ ​bot have either 
frustrated players or left them eager for a rematch. In this way, the neural network 
exhibits beneficence as a practice tool for players to improve against specific 
Pokemon. The major downside to releasing this neural network to the public is that 
someone with malicious intent can deploy numerous bots on the Pokemon 
Showdown website and ruin the experience for all players. This increased web 
traffic causes trouble for administrators who will then need to kick the bots. 

3. Impact on Society: ​Machine learning in video games has led to improvements in 
quality of life. For instance, the network behind alphago optimizes power grids to 
reduce electricity consumption[3].  We imagine the decision-making paradigm in 
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Pokemon can also extend to larger applications like robotics. In addition, our neural 
network can help video game developers test new Pokemon and features. 
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