

Final Report
03.12.2019
─

Martyn Wei and Richard Ren
UndefeatablePokemonTrainer

Word Count: 1996
Penalty: 0

 1

Introduction
The goal of this project is to build a neural network that can win 50% of battles in the game
of Pokemon. First, we will explain the mechanics of the game. Essentially, two competing
trainers take turns deciding on one of four moves that their respective Pokemon can
perform. The choice of Pokemon and their moveset are determined before the match
begins. Each trainer seeks to reduce the health of the opponent’s Pokemon to zero, and
must strategically decide on a move depending on the conditions of the turn. As illustrated
in Figure 1, they may choose the status move Will-O-Wisp to burn the opponent and reduce
their health every turn for the rest of the battle by an incremental amount rather than
Shadow Sneak which inflicts greater damage for a single turn.

Figure 1: Screenshot of Pokemon Battle

To win 50% of battles, we developed a neural network to play a specified Pokemon with
four moves. A neural network fits the task because it can accurately process a turn’s
numerous conditions. Using ideas from reinforcement learning, the neural network will
learn from previously played battles.

 2

To measure the performance of our neural network, we played on the online platform
Pokemon Showdown against human players. Attracting over 100 000 players a day, we
need to evaluate the performance of a neural network against human players and develop
a practice tool for players.

Related Work
In this section, we describe an AI that plays Pokemon from the paper Optimal Battle Strategy
in Pokemon using Reinforcement Learning[1]

While the authors of this paper shared our view of reducing the opposing Pokemon’s
health to zero, they also sought to “maximally retain[ing] the health of their Pokemon.'' To
achieve this, they decided to use a model-free approach Q-learning, in which Q-values are
assigned to each of the four moves. The AI has a 90% chance of selecting the move with the
highest Q-value and a 10% chance of selecting a random move. Q-values were adjusted by
rewarding the moves that resulted in wins or having greater health than the opponent and
punishing moves that resulted in losses or having lower health than the opponent. With
this Q-Learning model, the authors won 60% of matches. We were inspired by this work
when we created labels that represent the optimal move. For instance, if we lost, we would
reduce the used move’s F-value (measures favourability to use the move) and increase the
F-value of the other three moves by random amounts.

Models
We developed a baseline model that greedily selects the maximum damage move against a
specific Pokemon. Since the greedy choice is not always globally optimal, we built the
work-smart model to train on the battle data and learn from wins and losses.

Our final work-smart neural network model architecture consists of 3 layers: input, hidden,
and output. By normalizing and one-hot encoding the features, we need 43 neurons in our
input layer. The input data is processed by 20 neurons in the hidden layer. The output layer
has four neurons that correspond to the favourability of using a particular move. The
model plays the move with the greatest F-value.

 3

Figure 2: Neural Network Architecture

The neural network was trained with the following hyperparameters:

- Optimizer: Adam Optimizer
- Loss function: BCEwithLogits
- Batch-size: 995
- Learning Rate: 0.1
- Epochs: 50

The work-smart model has four new hyperparameters, α, β, γ, and Δ, further described in
the data section. In this process we rewarded victories by increasing the maximum F-value
move by a factor α and increasing/decreasing the F-value of the other moves by a factor β;
we punished losses by decreasing the maximum F-value move by a factor γ and increasing
the F-values of other moves by a factor Δ.

For our smart model we used the following hyperparameters:

● α = 1.15

● β = 0.85

● γ = 0.85

● Δ = 1.15

 4

Illustration/Figure

Figure 3: Project Diagram

 5

Initially, the baseline is trained to select the maximum damage move. This model played on
the Pokemon Showdown servers against human players to collect data about the
opponent, the moves used and the result win/loss. The game data was then processed to
generate new labels for the model’s iterative training.

Data
We used one dataset for the baseline and another for the work-smart model. Both models
received inputs consisting of stats (numerical data) and types (categorical data) by parsing a
text file. Below is an entry for the Pokemon Bulbasaur:

Figure 4: Information about Bulbasaur.

Stats are numerical data that describe the battling capability of the Pokemon. For instance,
the attack stat correlates with how well it deals damage, while the defense stat indicates its
resistance to damage. As numerical data, it was normalized with the following equation:

 z = σ
X−μ

Type effectiveness is another important concept in Pokemon, analogous to the hierarchy in
rock-paper-scissors. For example, a fire-type Pokemon can easily defeat grass-type
Pokemon. As categorical data, types are one-hot encoded.

 6

Figure 5: Stats Figure 6: Types

Together, the numerical and categorical data feeds 43 inputs to the neural network. The
label is a one-hot encoded 4-dimensional vector corresponding to the moves: Outrage,
Rock Slide, Iron Tail, and Superpower.

For the baseline, we calculated the maximum damage move and assigned it the label of 1,
assigning all other moves a label of 0.

For the “work-smart” model, the features are identical to the baseline, however, the label is
modified with battle data. The battle data was cleaned to remove incomplete games and
duplicate moves. After cleaning, the battle data consists of the opponent’s Pokemon, the
move used, and the result of the battle.

Figure 7: Cleaned Battle Data

 7

If we won, we rewarded the choice using the equation:

label = move*ɑ + move’*β + move’*r

Where:
label - 4-dimensional vector consisting of the F-values of each move
move - 4-dimensional vector with best move initialized as 1and 0 otherwise
move’ - 4-dimensional vector with a 0 for the current best move and 0.09 otherwise
ɑ, β - scalar hyperparameters
r - 4-dimensional vector with random values between 0 and 0.01

If we lost, we punished the choice using the equation:

label = move*γ + move’*Δ + move’*r

Where:
γ, Δ - hyperparameters

Results
As described in our introduction, we aimed to develop a neural network to surpass a 50%
win rate.

However, we would also like to understand why our neural network won or lost a battle.
We cannot use ideas such as sensitivity, precision, or confusion matrices because our labels
are an estimate of the best move. Instead, we examine relationships in battle data. Since
battles are won or lost based on the move, it is imperative to know its frequency with
respect to the number of wins/losses and the frequency of the opponent’s Pokemon.

In our project, we deployed four work-smart models that had different hyperparameters
for the labelling equation.

Table 1: Selection of Hyperparameters for Four Work-Smart Models.

Model Name α β γ Δ

Model1 1.1 1.01 0.95 1.05

Model2 1.2 1.01 0.9 1.1

Model3 1.1 0.9 0.9 1.1

Model4 1.15 0.85 0.85 1.15

 8

We obtained a holistic measure of performance by looking at the number of wins and
losses for each model in Table 2.

Table 2: Win/Loss Information for Each Model.

Model Type Model Name Win Loss Win Rate

Baseline Baseline 529 534 0.498

Work-smart Model1 41 77 0.347

Model2 54 92 0.370

Model3 73 99 0.424

Model4 70 85 0.452

Concentrating on the analysis of our most successful models: baseline and Model4, we
compare the number of times each move is used based on the battle data collected by the
baseline.

Table 3: Number of Times a Move is Used by the Baseline and Model4.

Move # of times used by baseline # of times used by Model4

Outrage 484 329

Superpower 383 356

Iron Tail 99 101

Rock Slide 40 100

Model4 uses a much evener distribution of moves after training on new labels.

Depending on the distribution of opponent Pokemon, we expect a corresponding optimal
distribution of moves. In the next table, we observe the relationship between the
opponent’s Pokemon with the number of wins/losses.

 9

Table 4: Top 6 Frequently-Appearing Pokemon and Outcome of Match for Baseline.
In this dataset, the baseline has battled 203 different Pokemon.

Pokemon Move Used # of wins # of losses

Gyrados Outrage 7 35

Greninja Superpower 19 12

Charizard Rock Slide 15 12

Donphan Outrage 2 21

Slaking Superpower 1 20

Aegislash Outrage 1 18

Model4 encountered a different set of frequent Pokemon in their dataset. But we would
like to highlight the different moves chosen by each model.

Table 5: 6 Most Frequently-Appearing Pokemon and Corresponding Move Used.

Pokemon Move used by Baseline Model used by Model4

Gyrados Outrage Superpower

Greninja Superpower Superpower

Charizard Rock Slide Rock Slide

Donphan Outrage Outrage

Slaking Superpower Superpower

Aegislash Outrage Superpower

Discussion and Learnings
We were surprised that the baseline had the highest win rate of 49.8% and was

closely followed by Model4 at 45.2%. The work-smart model was unable to learn effectively
from the baseline battle data with our approach to achieve the desired 50% win rate.

 10

From table 5, Model4 has some changes in the move label compared to the
baseline. The change from using the move Outrage to Superpower against the Pokemon
Gyarados was an improvement since it can change its type to become weak to Superpower.
Although changing the move against the Pokemon Aegislash from Outrage to Superpower is
unwise because Aegislash is unaffected by Superpower.

Comparing the results in table 2 with the hyperparameter values in table 1, we find
that models with a β value above 1 have poor performance. Since the modifiers for move’
are always positive, the label switches from the most damaging move to a new move easily,
resulting in many suboptimal changes.

Unfortunately, the release of Pokemon Sword and Shield broke our script and
hindered data collection. It also forced us to play on smaller servers with long wait times,
and more experienced players. This was a large setback for us because we were unable to
collect a sufficiently large dataset conducive for a higher win rate.

In the future, we would run the models and data collection scripts when Pokemon is
not releasing a new update. This way, we play the models in a consistent environment. We
would also replace our baseline neural network with a lookup table for data collection.

Ethical Framework
While artificial intelligence has far surpassed humans in games like Go and Starcraft;

we lack ethical consideration. The main stakeholders, in this case, are the Pokemon players,
developers, and administrators.

We consider reflexive principlism through each stage: data collection, model use
and impact in society.

1. Data Collection: We infringe on the autonomy of human players by collecting their
data without their consent. This process is maleficent as players lose enjoyment in
facing a neural network that repeats its strategy[2]. Players may quit Pokemon
Showdown while we collect data.

2. Model use: Based on online messages, repeated matches with our bot have either
frustrated players or left them eager for a rematch. In this way, the neural network
exhibits beneficence as a practice tool for players to improve against specific
Pokemon. The major downside to releasing this neural network to the public is that
someone with malicious intent can deploy numerous bots on the Pokemon
Showdown website and ruin the experience for all players. This increased web
traffic causes trouble for administrators who will then need to kick the bots.

3. Impact on Society: Machine learning in video games has led to improvements in
quality of life. For instance, the network behind alphago optimizes power grids to
reduce electricity consumption[3]. We imagine the decision-making paradigm in

 11

Pokemon can also extend to larger applications like robotics. In addition, our neural
network can help video game developers test new Pokemon and features.

 12

References
[1] A. Kalose, K. Kaya, and A. Kim, “Optimal Battle Strategy in Pokemon using Reinforcement
Learning.”

[2] A. Barasch, “AI Ethics, Computer With Souls, Self-Playing Games,” Variety, 31-Mar-2019.
[Online]. Available:
https://variety.com/2019/gaming/features/ai-ethics-computer-with-souls-self-playing-game
s-1203176874/. [Accessed: 03-Dec-2019].

[3] C. Metz, “Google's AlphaGo Levels Up From Board Games to Power Grids,” Wired,
24-May-2017. [Online]. Available:
https://www.wired.com/2017/05/googles-alphago-levels-board-games-power-grids/.
[Accessed: 23-Oct-2019].

 13

Permissions

• permission to post video: yes/no OR wait till see video

• permission to post final report: yes/no

• permission to post source code: yes/no

