

AirUI Final Project Report
Aman Bhargava (1005189733) Adam Carnaffan (1005069435)

 Alice Zhou (1004838697)

December 6th, 2020

Total Word Count: 1819 words

Background

Introduction
AirUI stands for ‘Artificially Intelligent Reality User Interface’. We aim to create a classifier for
gestures (e.g. swipes, taps, etc.) made on wooden surfaces based on the audio users produce.
This classifier can be used in a user interface system to make human-computer interaction more
accessible, both economically and for those with physical disabilities.

We choose to use a Neural Network approach because the state-of-the-art in the field [1] yields a
sub-optimal classification accuracy of 89.5% using a shallow decision tree. It is a difficult
problem to hard-code due to noise and intra-class variance, but humans are able to differentiate
the sounds with ease, implying that the information necessary for classification exists in the data.
Thus, a neural network approach was chosen to solve the problem.

Illustrations

Figure 1: Block diagram for a scratch based user interface. Our classifier, circled in yellow, is
the focus of our investigation.

Figure 2: CNN model diagram. An image spectrogram representing the audio is used as input,
and the output classes are estimated with a test accuracy of 95.9%.

Related Works
The state-of-the-art in scratch user interface technology is established in [1]. Using a
custom-built contact microphone apparatus, they achieve 89.5% classification accuracy on 6
gesture types via a shallow decision tree algorithm with energy peak counting for feature
extraction. This paper offered a benchmark for us to improve upon.

A key paper on the use of deep learning models for audio classification comes from Google’s
research division [2]. Using a CNN with Mel spectrograms for feature extraction, they classify a
dataset of 70 million YouTube video audio samples into video categories. They find that CNN
tends to perform best for the audio classification task when used with Mel spectrograms, which
informed our model and feature extraction method selection.

Data & Data Processing
There were 6 gesture types we aimed to classify:

1. Fingertip Tap.
2. Fingernail Tap.
3. Vertical Scratch.
4. Circle Scratch.
5. W-Scratch.
6. Silence/Null class (​background activity and noise was encouraged​).

To collect our data, we sent a video with instructions on how to record each gesture to a
metronome. The metronome made it possible to automate segmentation after the data was
cleaned. Our 24 participants recorded 70 samples for each of the 6 input classes. To clean the
data, the first 10 samples were discarded as they had substantial variation in timing as the users
got used to the metronome tempo.

Figure 3: Example raw audio waveform for a low-noise sample of the ‘tap’ class. Note the

dimensionality on the order of 10e5.

After segmentation, we utilized Mel spectrograms for feature extraction using the Librosa
Python library. The Mel spectrogram (shown in ​Figure 4​) plots frequency vs. energy vs. time.
Importantly, the frequency scale is logarithmic. Because frequency responses are generally
defined as multiples of some fundamental frequency, the logarithmic frequency scale enables the
same kernels to be learned for samples with high and low fundamental frequencies alike.

Figure 4: Example Mel spectrogram for a noisier tap gesture. Note the logarithmic frequency

scale. Dimensionality is reduced to the order of 10e3.

Our final dataset consisted of 8640 training samples, evenly split between each of the 6 classes.
The training set comprised 60% of the data, the validation set 20%, and the test set had the
remaining 20%. To mimic the methodology of [1], we allow samples from the same individuals
to appear in the three datasets.

Modelling

Architecture
The final model architecture is a Convolutional Neural Network (CNN). It consists of 2
convolutional layers followed by 2 fully connected layers. To obtain a probability-like output,
we used 6 output neurons with a softmax function that was bundled with the Cross Entropy Loss
function. Other hyperparameters are listed in ​Table 1​.

Table 1: fixed and variable hyperparameters used in the CNN model

Grid search was used on every combination of the variable hyperparameters listed above. Since
the final processed data had different sizes, all images were symmetrically cropped to the
smallest image size in the dataset (100x65px). This resembles the real life implementation of
cropping a long audio to shorter frames of spectrograms. To get a better understanding of how
much information is lost due to cropping, other transformations were also used.

Fixed Hyperparameters Variable Hyperparameters (Name + Range)

2 Convolutional Layers Input Image
Transformation

Cropping /padding/ squeezing/
stretching

2 Fully Connected Layers Batch Size [24, 48, 64]

Batch Normalization Number of Kernels in the
Convolutional Layers

[4, 8, 12]

Cross Entropy Loss function Learning Rate [0.1, 0.01]

3x3 Kernel Size Seed [6, 42]

100 Neurons in the First Fully
Connected Layer

To study the model behavior in real life scenarios, we implemented a rolling average algorithm
to the model output as audio was inputted in real time to the processing pipeline. The CNN
essentially scans across a long input spectrogram with a 100x65 pixel-sized window. The rolling
average smooths the probability estimation and allows us to assess the practical performance
holistically.

Baseline Model
Baseline 1: Energy vs. Time

The first baseline model sums over ​columns ​of the mel-frequency spectrograms, which gives us
inputs of size 65 vectors. Each vector is a representation of the audio waveform’s energy as a
function of time. A Multi Layer Perceptron (MLP) model was used to train the dataset. There
were 2 fully connected layers in the model with ReLU activations, and 100 neurons were used in
the hidden layer. Using the Adam optimizer, the model achieved a test accuracy of 71.2%.

Baseline 2: Energy vs. Frequency

The second baseline model uses the same MLP model as above. However, instead of summing
over the columns, the input of the second baseline model sums over the ​rows ​of the
spectrograms. The 100-dimensional feature vectors represent the audio energy as a function of
frequency. The model achieved a test accuracy of 81.2%.

The baseline models were chosen to reflect common feature extraction/dimensionality reduction
methods for waveform classification. Since the inputs are 1-D arrays with much smaller sizes
compared to the spectrograms, MLP was used.

Results

Quantitative Results
Our quantitative results were taken from the cropped dataset. False positives refer to improper
gesture recognition when a ‘silence’ class sample was input, and false negatives refer to the
model incorrectly predicting ‘silence’ when another class was given.

Figure 5: Training and Validation Accuracy vs. Epoch.

In the accuracies plot it is apparent that the model trained completely, and that the test accuracy
of 95.9% was reasonable.

Figure 6: Receiver-Operating Curves for each class.

In ​Figure 6​, The AUC is almost the maximum of 1, which indicates that the number of
misclassifications was extremely low.

Table 2: The confusion matrix confirms that in all classes, the false positive rate is below 5%.

Qualitative Results
The Circle class had the most confusion of the “positive result” classes by a wide margin, and
was examined to determine whether the model’s flaw that caused this could be reasonably fixed.

 Circle Fingernail Tap Fingertip Tap Silence Vertical Scratch
W
Scratch

Circle 266 0 0 5 0 3

Fingernail Tap 2 246 5 2 1 2

Fingertip Tap 1 4 308 4 1 1

Silence 5 0 3 308 2 2

Vertical
Scratch 2 1 0 2 288 1

W Scratch 3 0 0 6 0 283

Figure 7-8: Ground truth for both samples is ‘Circle Scratch’, but the model incorrectly

classifies them as ‘Silence’ with high confidence.

In ​Figure 7-8​, the classifier mis-classified the circle class as silence.

Figure 9: Correctly classified example from ‘Circle Scratch’ class.

In ​Figure 9​, the classification occurred correctly.

Reflection

Discussion & Learnings
Given that the model achieved a final accuracy of 95.7% with few false positives cases, we
considered the model to be well performed. From the user experience perspective, a false trigger
is significantly worse than having to repeat a gesture, provided that the model is below the 5%
confusion threshold for any class. The most confused in the model was Silence, which is ideal
because the class carries a low risk false negative prediction.

Circle Scratch carried the most confusion among positive classes. One reason for this is that the
duration of this class can exceed the width of the images being input to our model. It also has a
low signal-to-noise ratio. Circle Scratch is simply a long drag, which is visually similar to white
noise in some cases (​Figures 7-8​). In ​Figure 9​, however, there was a clear definition of silence
on both sides, which seems to help our model pick out the scratch.

Table 3​ lists the best accuracies of the model using different image transformation methods, with
the highest accuracy achieved from padding, lowest accuracy from cropping, and scaling
(squeeze/ stretch) in the middle. This is reasonable since information was lost from cropping the
images, and distorted from applying scaling methods, but was mostly retained in padding.

Table 3: Best model accuracies for different image transformations

Unfortunately, alternatives to cropping require knowledge of the gesture length beforehand,
which is infeasible for practical applications. To explore the best frame width in the future, one
should obtain individual audio gestures with longer durations, such that different cropped lengths
can be experimented.

Some other improvements of the project include adding more gestures to identify, and collecting
more data to cover more test subjects and microphones. To improve the efficiency of the
product, we would explore the best model with the least amount of parameters and processing
time. Furthermore, though our procedure enables comparison to [1], further investigation is
required to determine the model’s ability to generalize to novel noise/data distributions.

 Cropped Padded Scaled Small Scaled Large Scaled Medium

Seed 6 6 6 6 6

Learning Rate 0.1 0.1 0.1 0.1 0.1

Batch Size 48 48 48 64 48

Kernels 12 4 12 12 8

Accuracy 95.90% 97.15% 96.41% 96.36% 96.07%

Depending on performance on novel data, model calibration (e.g. via transfer learning) may be
warranted.

Ethical Framework
Our stakeholders include ourselves, all users of touch devices, smartphone manufacturers and
firmware designers, and those with damaged devices or disabilities that prevent them from using
a conventional touch input.

Nonmaleficence applies evenly across all of our stakeholders. The most critical factor here is that
the number of false positives of the model is as low as possible. False positives can be damaging
and cause harm for any user of the application, and cause harm to the firmware designers who
would implement our model as users would lose faith in their devices.

Beneficence best applies to the disabled who would need these accessibilities in order to use
devices properly, and the manufacturers who offer additional accessibility features over
competitors. Accuracy and speed of our model are the most important for this principle because
they represent the lay man’s perception of performance [3], which is the main factor that matters
to users when measuring how good a tool is for them.

Autonomy is the most unbalanced, affecting almost exclusively those with damaged iphones and
disabilities. False negatives are the greatest factor in autonomy because they will cause no input,
where our key stakeholder has no other reliable source of input, thus the failure of our model
would restrict this stakeholder’s autonomy particularly.

Justice will affect those with disabilities most, as they are the most unjustly impacted in
conventional device use. The accuracy of this model will improve accessibility for disabled
individuals, and though this improvement does benefit all stakeholders, it is most beneficial to
those who have no other option.

In summary, with the goal of helping the greatest number of stakeholders the most, it is best to
focus on nonmaleficence, which also has a byproduct of being great for autonomy. All
stakeholders will see great benefit from this, and later improvements can be focused on
beneficence, which will also increase justice and fill the full intended purpose of the project.

References
[1] C. Harrison and S. E. Hudson, “Scratch input,” ​Proceedings of the 21st annual ACM

symposium on User interface software and technology - UIST '08​, Oct. 2008.

[2] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal,

D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. Wilson, “CNN
architectures for large-scale audio classification,” ​2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP)​, Mar. 2017.

[3] A. Murata, “Empirical evaluation of performance models of pointing accuracy and speed

with a PC mouse,” ​International Journal of Human-Computer Interaction​, vol. 8, no. 4,
pp. 457–469, 1996.

Permissions

Adam Carnaffan
Permission to post video: Yes
Permission to post final report: Yes
Permission to post source code: Yes

Aman Bhargava
Permission to post video: Yes
Permission to post final report: Yes
Permission to post source code: Yes

Alice Zhou
Permission to post video: Yes
Permission to post final report: Yes
Permission to post source code: Yes

