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Background 

Introduction 
AirUI stands for ‘Artificially Intelligent Reality User Interface’. We aim to create a classifier for 
gestures (e.g. swipes, taps, etc.) made on wooden surfaces based on the audio users produce. 
This classifier can be used in a user interface system to make human-computer interaction more 
accessible, both economically and for those with physical disabilities. 
 
We choose to use a Neural Network approach because the state-of-the-art in the field [1] yields a 
sub-optimal classification accuracy of 89.5% using a shallow decision tree. It is a difficult 
problem to hard-code due to noise and intra-class variance, but humans are able to differentiate 
the sounds with ease, implying that the information necessary for classification exists in the data. 
Thus, a neural network approach was chosen to solve the problem. 

Illustrations 

 
Figure 1: Block diagram for a scratch based user interface. Our classifier, circled in yellow, is 
the focus of our investigation. 



 

 
Figure 2: CNN model diagram. An image spectrogram representing the audio is used as input, 
and the output classes are estimated with a test accuracy of 95.9%. 

Related Works 
The state-of-the-art in scratch user interface technology is established in [1]. Using a 
custom-built contact microphone apparatus, they achieve 89.5% classification accuracy on 6 
gesture types via a shallow decision tree algorithm with energy peak counting for feature 
extraction. This paper offered a benchmark for us to improve upon. 
 
A key paper on the use of deep learning models for audio classification comes from Google’s 
research division [2]. Using a CNN with Mel spectrograms for feature extraction, they classify a 
dataset of 70 million YouTube video audio samples into video categories. They find that CNN 
tends to perform best for the audio classification task when used with Mel spectrograms, which 
informed our model and feature extraction method selection. 

Data & Data Processing 
There were 6 gesture types we aimed to classify: 

1. Fingertip Tap. 
2. Fingernail Tap. 
3. Vertical Scratch. 
4. Circle Scratch. 
5. W-Scratch. 
6. Silence/Null class (​background activity and noise was encouraged​). 

 



 

To collect our data, we sent a video with instructions on how to record each gesture to a 
metronome. The metronome made it possible to automate segmentation after the data was 
cleaned. Our 24 participants recorded 70 samples for each of the 6 input classes. To clean the 
data, the first 10 samples were discarded as they had substantial variation in timing as the users 
got used to the metronome tempo.  
 

 
Figure 3: Example raw audio waveform for a low-noise sample of the ‘tap’ class. Note the 

dimensionality on the order of 10e5. 
 
After segmentation, we utilized Mel spectrograms for feature extraction using the Librosa 
Python library. The Mel spectrogram (shown in ​Figure 4​) plots frequency vs. energy vs. time. 
Importantly, the frequency scale is logarithmic. Because frequency responses are generally 
defined as multiples of some fundamental frequency, the logarithmic frequency scale enables the 
same kernels to be learned for samples with high and low fundamental frequencies alike.  
  

 
Figure 4: Example Mel spectrogram for a noisier tap gesture. Note the logarithmic frequency 

scale. Dimensionality is reduced to the order of 10e3. 
 



 

Our final dataset consisted of 8640 training samples, evenly split between each of the 6 classes. 
The training set comprised 60% of the data, the validation set 20%, and the test set had the 
remaining 20%. To mimic the methodology of [1], we allow samples from the same individuals 
to appear in the three datasets.  

Modelling 

Architecture 
The final model architecture is a Convolutional Neural Network (CNN). It consists of 2 
convolutional layers followed by 2 fully connected layers. To obtain a probability-like output, 
we used 6 output neurons with a softmax function that was bundled with the Cross Entropy Loss 
function. Other hyperparameters are listed in ​Table 1​.  
 

Table 1: fixed and variable hyperparameters used in the CNN model  
 
Grid search was used on every combination of the variable hyperparameters listed above. Since 
the final processed data had different sizes, all images were symmetrically cropped to the 
smallest image size in the dataset (100x65px). This resembles the real life implementation of 
cropping a long audio to shorter frames of spectrograms. To get a better understanding of how 
much information is lost due to cropping, other transformations were also used.  

  

Fixed Hyperparameters  Variable Hyperparameters (Name + Range) 

2 Convolutional Layers  Input Image 
Transformation  

Cropping /padding/ squeezing/ 
stretching 

2 Fully Connected Layers Batch Size [24, 48, 64] 

Batch Normalization  Number of Kernels in the 
Convolutional Layers 

[4, 8, 12] 

Cross Entropy Loss function  Learning Rate [0.1, 0.01] 

3x3 Kernel Size  Seed [6, 42] 

100 Neurons in the First Fully 
Connected Layer  

  



 

To study the model behavior in real life scenarios, we implemented a rolling average algorithm 
to the model output as audio was inputted in real time to the processing pipeline. The CNN 
essentially scans across a long input spectrogram with a 100x65 pixel-sized window.  The rolling 
average smooths the probability estimation and allows us to assess the practical performance 
holistically.  
 

Baseline Model 
Baseline 1: Energy vs. Time 

The first baseline model sums over ​columns ​of the mel-frequency spectrograms, which gives us 
inputs of size 65 vectors. Each vector is a representation of the audio waveform’s energy as a 
function of time. A Multi Layer Perceptron (MLP) model was used to train the dataset. There 
were 2 fully connected layers in the model with ReLU activations, and 100 neurons were used in 
the hidden layer. Using the Adam optimizer, the model achieved a test accuracy of 71.2%. 

Baseline 2: Energy vs. Frequency 

The second baseline model uses the same MLP model as above. However, instead of summing 
over the columns, the input of the second baseline model sums over the ​rows ​of the 
spectrograms. The 100-dimensional feature vectors represent the audio energy as a function of 
frequency. The model achieved a test accuracy of 81.2%.  

The baseline models were chosen to reflect common feature extraction/dimensionality reduction 
methods for waveform classification. Since the inputs are 1-D arrays with much smaller sizes 
compared to the spectrograms, MLP was used. 

Results 

Quantitative Results 
Our quantitative results were taken from the cropped dataset. False positives refer to improper 
gesture recognition when a ‘silence’ class sample was input, and false negatives refer to the 
model incorrectly predicting ‘silence’ when another class was given. 



 

 
Figure 5: Training and Validation Accuracy vs. Epoch. 

 
In the accuracies plot it is apparent that the model trained completely, and that the test accuracy 
of 95.9% was reasonable.  

 
Figure 6: Receiver-Operating Curves for each class. 

 
In ​Figure 6​, The AUC is almost the maximum of 1, which indicates that the number of 
misclassifications was extremely low. 
 



 

 
 
 

 
Table 2: The confusion matrix confirms that in all classes, the false positive rate is below 5%.  

Qualitative Results 
The Circle class had the most confusion of the “positive result” classes by a wide margin, and 
was examined to determine whether the model’s flaw that caused this could be reasonably fixed. 
 

 
 

 Circle Fingernail Tap Fingertip Tap Silence Vertical Scratch 
W 
Scratch 

Circle 266 0 0 5 0 3 

Fingernail Tap 2 246 5 2 1 2 

Fingertip Tap 1 4 308 4 1 1 

Silence 5 0 3 308 2 2 

Vertical 
Scratch 2 1 0 2 288 1 

W Scratch 3 0 0 6 0 283 



 

 
Figure 7-8: Ground truth for both samples is ‘Circle Scratch’, but the model incorrectly 

classifies them as ‘Silence’ with high confidence. 
 
In ​Figure 7-8​, the classifier mis-classified the circle class as silence.  
 

 
Figure 9: Correctly classified example from ‘Circle Scratch’ class. 

 
In ​Figure 9​, the classification occurred correctly.  
 

  



 

Reflection 

Discussion & Learnings  
Given that the model achieved a final accuracy of 95.7% with few false positives cases, we 
considered the model to be well performed. From the user experience perspective, a false trigger 
is significantly worse than having to repeat a gesture, provided that the model is below the 5% 
confusion threshold for any class. The most confused in the model was Silence, which is ideal 
because the class carries a low risk false negative prediction. 
 
Circle Scratch carried the most confusion among positive classes. One reason for this is that the 
duration of this class can exceed the width of the images being input to our model. It also has a 
low signal-to-noise ratio. Circle Scratch is simply a long drag, which is visually similar to white 
noise in some cases (​Figures 7-8​). In ​Figure 9​, however, there was a clear definition of silence 
on both sides, which seems to help our model pick out the scratch. 
 
Table 3​ lists the best accuracies of the model using different image transformation methods, with 
the highest accuracy achieved from padding, lowest accuracy from cropping, and scaling 
(squeeze/ stretch) in the middle. This is reasonable since information was lost from cropping the 
images, and distorted from applying scaling methods, but was mostly retained in padding.  

Table 3: Best model accuracies for different image transformations  
 
Unfortunately, alternatives to cropping require knowledge of the gesture length beforehand, 
which is infeasible for practical applications. To explore the best frame width in the future, one 
should obtain individual audio gestures with longer durations, such that different cropped lengths 
can be experimented.  

Some other improvements of the project include adding more gestures to identify, and collecting 
more data to cover more test subjects and microphones. To improve the efficiency of the 
product, we would explore the best model with the least amount of parameters and processing 
time. Furthermore, though our procedure enables comparison to [1], further investigation is 
required to determine the model’s ability to generalize to novel noise/data distributions. 

 Cropped Padded Scaled Small Scaled Large Scaled Medium 

Seed 6 6 6 6 6 

Learning Rate 0.1 0.1 0.1 0.1 0.1 

Batch Size 48 48 48 64 48 

Kernels 12 4 12 12 8 

Accuracy 95.90% 97.15% 96.41% 96.36% 96.07% 



 

Depending on performance on novel data, model calibration (e.g. via transfer learning) may be 
warranted. 

Ethical Framework 
Our stakeholders include ourselves, all users of touch devices, smartphone manufacturers and 
firmware designers, and those with damaged devices or disabilities that prevent them from using 
a conventional touch input.  
 
Nonmaleficence applies evenly across all of our stakeholders. The most critical factor here is that 
the number of false positives of the model is as low as possible. False positives can be damaging 
and cause harm for any user of the application, and cause harm to the firmware designers who 
would implement our model as users would lose faith in their devices. 
 
Beneficence best applies to the disabled who would need these accessibilities in order to use 
devices properly, and the manufacturers who offer additional accessibility features over 
competitors. Accuracy and speed of our model are the most important for this principle because 
they represent the lay man’s perception of performance [3], which is the main factor that matters 
to users when measuring how good a tool is for them. 
 
Autonomy is the most unbalanced, affecting almost exclusively those with damaged iphones and 
disabilities. False negatives are the greatest factor in autonomy because they will cause no input, 
where our key stakeholder has no other reliable source of input, thus the failure of our model 
would restrict this stakeholder’s autonomy particularly.  
 
Justice will affect those with disabilities most, as they are the most unjustly impacted in 
conventional device use. The accuracy of this model will improve accessibility for disabled 
individuals, and though this improvement does benefit all stakeholders, it is most beneficial to 
those who have no other option.  
 
In summary, with the goal of helping the greatest number of stakeholders the most, it is best to 
focus on nonmaleficence, which also has a byproduct of being great for autonomy. All 
stakeholders will see great benefit from this, and later improvements can be focused on 
beneficence, which will also increase justice and fill the full intended purpose of the project. 
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