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Introduction 
Music has become integral to today’s entertainment culture, but getting sheet music to play is difficult.                
Sheet music can be bought, but can be expensive. Finding the right pitches and rhythm is tedious for any                   
individual, especially because when multiple notes are being played simultaneously. Therefore, we are             
capitalizing on the opportunity to automate the process of music transcription. 
 
Music transcription is the process of taking an audio file and writing it to a format like MIDI, which                   
contains information about the pitches, volume, duration, etc. of the music for each instrument and can be                 
converted into sheet music. In our case, the goal of AutoTranscriber is to turn recordings of solo piano                  
music into MIDI files. By using a neural network, we can expand this task to multiple instruments,                 
instrument transfer and classification, efficiently. We have also seen that machine learning has proved              
successful in similar projects, solidifying our confidence in utilizing a machine learning based approach.  

Illustration / Figure 

 
Figure 1: Data preprocessing pipeline 

 
Figure 2: Final network 



Background and Related Works 
There are several challenges in automating music transcription. These include pitch, note duration, and              
volume estimation, instrument recognition, and beat tracking, among others [1]. Our project focuses only              
on the piano, and on pitch and note duration estimation. 
 
Our project’s model is inspired by the state-of-the-art neural network architecture that is a mix of CNNs                 
and LSTMs presented in, “Onset and Frames: Dual-Objective Piano Transcription,” by Hawthorne et. al              
[2]. This paper addressed automatic music transcription for piano and by taking in audio spectrograms               
and producing a corresponding MIDI representation. The architecture is inspired by similar models used              
in speech recognition tasks. The main insight this work provides is to consider the onset of notes when                  
predicting note activations in a frame of music. 

Data and Data Processing 
The data we collected consisted of recordings of different genres of solo piano music. To collect audio,                 
we recorded it in .m4a format while listening to the corresponding MIDI file collected from online to                 
attempt to synchronize the data (audio) and label (MIDI) as much as possible. It was then converted into a                   
.wav file. This was then sampled at a rate of 16 kHz, as done in prior papers [2], and partitioned into                     
4-second long segments. Afterwards, each segment was transformed into a spectrogram using Fourier             
transforms, and scaled with the mel scale with 229 bins, again as done in prior papers [2]. The mel scale                    
transforms the frequencies into frequency bins spaced evenly according to the hearing of humans. We log                
the amplitudes to generate the final spectrogram. The spectrogram contains normalized values with             
respect to the training set. 
 
To supplement our data, we used the MAESTRO dataset, which consists of .wav audio files and                
corresponding MIDI labels. We sampled from each of the training, validation, and testing sets from               
MAESTRO by composers to reach a train/validation/test split of 90/5/5 for a total of 8900 samples and                 
ensured equal composer representation (i.e: selecting the same number of songs per composer when              
possible) to yield a balanced dataset. The process of converting the audio to spectrograms followed the                
same as above, which are summarized in Fig. 1. A sample of data is found in the figure below (Fig. 3)                     
followed by statistics of each set (Fig. 4).  
 



 

Figure 3:​ ​Sample of input spectrogram with corresponding MIDI label. The spectrogram has the time 
frame on the x-axis, and the frequency on the y-axis. To read the spectrogram, each point represents the 

loudness of that frequency (according to the colour scale, measured in decibels) at that point in time.  
 

 
Figure 4: Duration of recordings from MAESTRO outlying the amount of data used for each set 

 

Architecture  
Our model can be seen in figure 2 and utilized a sequence of a CNN, a single fully connected layer, an                     
LSTM and another fully connected layer. Dimensions for each layer are specified in Figure 2.  

CNN: The CNN which has three convolutional layers, each with 20 kernels of size 3x3 and followed by a                   
ReLU activation function. The second and third layers have a padding of 1 and are followed by a max                   
pool with a 4x1 kernel, followed by dropout at 25%. The output is flattened to be passed into the fully                    
connected layer. All convolutional layers utilize batch normalization before activation functions.  

Fully Connected Layer #1: ​Dropout is implemented at 50% and the output is normalized using batch                
normalization and passed through a ReLU activation function. The output is then reshaped for the LSTM.  



LSTM: ​The LSTM has one hidden layer and is initialized to take in data where batch size is the first                    
dimension. The output is flattened for the next fully connected layer.  

Fully Connected Layer #2: ​Dropout is implemented at 50% and the output is normalized using batch                
normalization and passed through a ReLU activation function. Since our loss function is BCElogitsloss,              
which applies a sigmoid within it’s computation, we return the raw predictions after the ReLU to pass into                  
our loss function and then another predictions tensor which is passed through a sigmoid as the actual                 
network prediction. 

Loss Function: ​Utilizes BCElogitsloss. 

Optimizer: ​Utilizes RMSProp. 

Baseline Model 

 
The baseline model is a system that attempts to automatically convert WAV files to MIDI format for                 
piano pieces. The process is shown in the figure below. 
 

 
(a) Step 1 (b) Step 2 

 
(c) Step 3 (d) Step 4 

 



Figure 5: Baseline model steps: (a) spectrogram of .wav file, (b) irrelevant frequencies removed, (c) 
loudest frequencies retained, and (d) conversion to MIDI notes. 

 
The spectrogram in Step 1 is computed from the input .wav file using the Librosa library. Step 2 keeps                   
only the rows in the spectrogram that correspond to frequencies playable on the piano. Step 3 is                 
performed by setting all values less than 75% of the maximum value in each column to 0. This helps                   
reduce noise. Step 4 is performed by mapping the rows in the spectrogram (each frequency) to their                 
corresponding MIDI note. 

Quantitative Results & Discussion 
We considered 2 measures of accuracy - an element-wise match and a check for matching values within a                  
specified window. The element-wise match was used to check the number of matching elements in our                
label array with our prediction array. Since the outputs for each value within the array was either a 1 or 0,                     
the values were binary with a 50% chance the model could guess correctly.  
 
We also wanted to determine the correct frames per prediction and thus considered an accuracy metric of                 
finding the number of columns (i.e: pitches being played at each time frame) from our prediction                
matching each column from our labels individually, as well as matching within a specified window. This                
is to account for our own collected data inaccuracies as it was impossible to ensure the values would be                   
played perfectly in time with our labels. 

Method 1 Results 
Below are the accuracy and loss curves for our final model using the first method. 

 
 

Figure 6:​ ​Plots of Element-Wise Accuracy versus Gradient Steps and Loss versus Gradient Steps for 
Final Model 

 
The model achieves a high validation element-wise accuracy of 94.5% by the end of training with training                 
accuracy of 84.6% and test accuracy of 91.5%. However, this is likely due to the large number of zeros in                    
the ground truth MIDI file (the label), and from the large number of zeros predicted by our model. The                   
most likely cause for the high validation accuracy compared to the training accuracy is due to the usage of                   



dropout in the model. While the training and validation losses at the end of the training loop are close to                    
each other, to lower the loss, a model with more parameters would be required. Compared to our baseline                  
which achieved an accuracy of 86.7%, our network was able to outperform it.  
 

Method 2 Results 

Table 1. Method 2 Results From Network 

 

Table 2. Method 2 Results From Baseline

 
We see that while element wise accuracy is quite high, column wise accuracy is low and provides a better                   
understanding of the actual quality of our predictions. Again, we see validation and testing accuracies               
higher than train as a likely result of heavy dropout presence. Further, we notice our network outperforms                 
the baseline again.  

Qualitative Results & Discussion  

Baseline Model Results 

 
(a) Baseline Model Predictions (d) Ground Truth MIDI 

 
Figure 7: Comparison of Baseline Model Predictions against Ground Truth MIDI 

 



Fig. 7 (a) shows a qualitative result, characteristic of what the baseline model produces. It correctly                
predicts the melody of the song (MIDI notes 60 to 80), but misses many of the other notes played, and                    
instead falsely predicts many low notes. This occurs because when converting the audio file to a                
spectrogram, while not easily visible, a lot of the low frequencies have nonzero values which are not                 
removed. 

Final Model Results 

 

Figure 8: Network Predictions for a Song with Few Notes 



 

Figure 9: Network Predictions for a Song with Many Notes 

Figures 8 and 9 together demonstrate that the network is able to correctly learn when to predict more or                   
less notes. The predictions in Fig. 8 are sparse, while the predictions in Fig. 9 are much denser, reflecting                   
the number of notes present in the input. The predictions themselves are not very meaningful though,                
implying the network was unable to learn the correct pattern and representations underlying the data.               
Therefore a larger network with more parameters or a better architecture is required. 

 

 

 



Learnings 
Originally, the model did not perform well as it was learning to consistently predict 0’s, which                
corresponds to silent notes. This was due to the sparsity of 1’s in our dataset. We had a training accuracy                    
of 93% using the element-wise accuracy function, and inferred that about 93% of our dataset consists of                 
0’s and adjusted our weighting to weigh the 1’s 9.3x more heavily in our loss function. When starting a                   
similar project, we would visualize the data much earlier to catch the problem and provide ourselves more                 
time to fix our network. Broadly speaking this was an interesting lesson in dealing with inherent class                 
imbalance and applies to a variety of problems beyond just music transcription such as object               
segmentation.  
 
Although weighted classes helped our network produce more 1’s, it was still unable to perfectly recreate                
the ground truth. If we had another similar project, we would consider adding information about note                
onsets, which refers to the initial moment a note is played. Other papers such as Google’s Onset and                  
Frames have designed models incorporating onset detectionormation and yielded successful results [2].  

Ethical Framework 
We will not be dealing with sensitive information or personal data as our data is exclusively audio files.                  
The data utilized was from Google’s MAESTRO dataset which is publicly available and will bring further                
awareness to Google’s dataset and its research, providing beneficence. Due to the public availability of               
our data, we will not need to ponder the ethical implications of data collection.  

For the user, there are little negative ethical impacts. Our tool is beneficent for users, transcribing various                 
music sources into playable sheet music for them. It also bolsters their autonomy by providing new                
sources for piano sheet music. The user’s individual justice is not impaired, nor is this tool maleficent                 
towards them. However, the sheet music industry would face injustice through a possible loss in sales.                
Many musicians sell sheet music on platforms like YouTube by performing songs would also face a                
similar consequence. Our tool would allow users to extract audio files of such performances and generate                
sheet music for free. Within this context, our tool could be maleficent. In addition to independent                
musicians, music stores could also have their autonomy diminished as less users may feel inclined to                
purchase sheet music when they can attain similar versions for free using our model. 
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