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Introduction 
 
The prospect of having an intelligent computer that can balance rational thought with 
human-like creativity could potentially be a groundbreaking innovation for applications like 
personal assistants, healthcare, military, self-driving cars, and more. When one thinks about 
what it means for an intelligent being to act in human ways, one may recall the Turing Test, 
which was proposed in 1950 to test artificial beings on a number of topics deemed 
‘important’ to true intelligence. 
 
Another way to think about whether an artificial being is intelligent is asking whether it could 
survive if placed an a ‘realistic’ world simulation alongside humans and/or other artificial 
beings, one where it needed to fulfill human-like survival behaviours like eating, sleeping, 
building shelter, and strategizing with or against others also living in the simulation to better 
the chance of survival. This is the challenge that our project seeks to investigate, that is, 
whether we can build an intelligent entity capable of surviving when placed under 
pseudo-realistic constraints for survival in a simulated world​. Albeit less rigorous for 
proving intelligence than measures like the Turing Test, and despite only being 
pseudo-realistic, our line of thought is that if simulations of this sort were made increasingly 
complex over time, eventually they may reach a realistic level and the artificial beings 
capable of surviving within them could reach human-level survival intelligence. 
 
 
Background & Related Work 
 
When thinking about placing an intelligent entity inside a simulation and deducing an 
algorithm to generate actions, one can quickly see a parallel to reinforcement learning (RL). 
Past RL algorithms have proved highly successful at making an ‘agent’ play through the 
game-like environment at a superhuman level (e.g. OpenAI Five, which defeated the world 
champion Dota2 team, or Deepmind’s AlphaGo [1][2]). Thus, modelling the survival 
simulation as a game-like RL problem can be a highly beneficial approach to this problem. 
The agent can be modeled as a neural network or other optimizer which can determine the 
best action to take at any step (​Appendix A​). 
 
A successful example is OpenAI’s Multi-Agent Hide and Seek [3]. Using RL methods to 
influence the actions of the agents, they were able to observe agents coming up with creative, 
human-like strategies to succeed over their competitors. By constructing a similar simulation 
environment, then adding our own pseudo-realistic survival game rules, we see a promising 
RL approach to creating intelligence capable of strategically competing for survival. Another 
motivation for approaching this problem with RL is its unsupervised nature; the agents will 
only be restricted by the environment constraints that we set. Instead, if they learn to survive 
it will be only through their own exploration and learning. 
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Illustration / Figure 
 

 
 
 
Data & Data Processing  

 
In the Darwin project, the "data"―consisting of each agent's state and the reward they 
receive from the environment―is continuously collected and processed (​Appendix B​). As 
such, it is essential to discuss the multiple Darwin Environments that we constructed. 
 
Since the goal of the project is to test agents’ intelligence in a reality-like survival 
environment, it is essential to construct the following objects:  
 

1. Two or more learning agents 
2. Multiple food-sites, as agents need to consume food in order to survive 
3. Walls/obstacles in the environment to increase complexity 
4. Sensors on the agents allowing them to detect surroundings.  

 
Our 4 different environment designs: 
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Table 1​. Summary Table of 4 constructed environments 

 
 

Simulation Environments 

Figure 1. ​From left: Baseline 1, Baseline 2, Survival 
 
Components 
 

● Agents  
○ Action represented by an array of velocities (x, y, ​θ) with possible values +/-1.  
○ 8 lidars representing lines of vision. 

 
● Food 
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○ Agent gains reward inside a predefined eating threshold. 
 

● Reward 
○ We want the agents to locate and move towards the food in the shortest 

number of steps.  
○ Number of steps 

■ “Punish” agents based on the number of steps taken to find food, by 
assigning a reward of -​α at each step.  

○ Food  
■ Assign rewards based on distance between agent and food to aid in 

"learning". To guide the agents toward food, the “eating threshold” 
covers the entire environment with a decaying ​reward function:  

 
● : deceleration factor used to flatten the ​sech​ curve (between 0λ  

and 1 if ​d ​> 0). 
● d​: distance between agent and food 

○ Through experiments, ​α = 1 and = 5 work the best; Thus:λ   

 
○ The survival environment includes sleep sites, where agents in the proximity 

gain "sleep health" ― an additional reward. The final proposed reward 
function for the survival environment is:  

 
 
The environment returns a dictionary of the agents' states and rewards, visualized below: 

 
 
Each agent has three arrays that contain 8 coordinates for each agent’s joints (default from 
MuJoCo), 8 rotational quaternion and velocities for joints, and the vision data from 8 lidar (to 
match other observations) [4]. Thus, for an environment with two agents, the dictionary can 
be split into two 8x3 matrices per agent, which can be concatenated together to form the final 
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8x6 matrix. The reward array is used to track the agents' performance during training (see 
Results). 
 
The same process is repeated for the other 3 environments with slightly different input and 
output sizes.  
 
Baseline Model 
 
The simplest model used was Q-learning. Through the Bellman equation, optimized with 
dynamic programming, the Q ("quality") values can be found for each state and action 
without machine learning [5]. The agent explores a simple environment over a fixed number 
of episodes, updating the maximum Q value (optimal action for each state) using a lookup 
table [6]. 
 
For context, the Q-learning baseline supported that the agent requires a neural network in 
order to survive in our simulated environment. Due to the environment's complexity and 
number of states, exploring and storing every possible state is too costly, so the agent failed 
to converge to an optimal policy with this approach. 
 
Architecture 
 
The network architecture for this problem focuses on using an agent’s observation of the 
environment (position, velocity, and lidar data) to make an informed decision. Each of the 
agents' observations are stacked into a matrix of (​n_agents+1​)​ ​columns, which can be 
processed using a 2D convolutional layer. This convolution ensures that the neural network 
accurately captures the relationship between each agent’s current observation (input 
columns).  
 
The data then enters a fully connected MLP which learns the relationship between the input 
matrix and the output Q-values. Batch normalization is applied to prevent exploding 
gradients. The network outputs 8 Q-values associated with each possible action. The 
maximum Q-value is the next "step" for the agent, which maximizes their reward and thus 
chances of survival (​Appendix A​). 

 
7 



 
Figure 2. ​Final CNN Model Architecture 

 
Since ‘labels’ or optimal actions are not known ahead of time, the training procedure of the 
main network​ (above), uses the ​target network​ to predict labels. Then, a MSE loss can be 
computed and used for SGD. Using the best action predicted by the main network, the 
training loop simulates another step, producing another observation that is fed into the target 
network generating the agent’s ​next​ response. The output of the target network is then applied 
to the Bellman equation to generate labels [5]. The target network is not trained; instead, its 
parameters are copied from the main network at a set interval of steps [7]. This interval is an 
important hyperparameter that allows the main network to converge. The model also collects 
every step into a "replay buffer", which acts as a constantly-changing training dataset for 
random sampling [8]. 
 
Qualitative & Quantitative Results 
 
The two main metrics of success used to judge whether the agent was successfully surviving 
in our environment were loss (MSE loss from model) and average reward collected over 
training (​Appendix C​).  
 
In our baseline environment, the combined loss and reward plots show that the agents 
collectively were able to converge on an optimal policy during training. However, we noticed 
competitive behaviour between two agents; as seen in the individual reward plot, ​agent0​ took 
bolder actions earlier on, which increased its loss at first but eventually allowed it to collect 
more rewards than ​agent1​. Following a series of "wins" for ​agent0 ​through steps 
5000~10000​,  the reward plot becomes more balanced and even shows ​agent1​ winning most 
of the steps between ​10000​ and ​15000​. We believe that longer training would display more 
strategies emerging between the two competing agents.   
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Figure 3. ​Quantitative results for the Baseline environment. 

 
Baseline with ​four​ agents showed a similar behaviour. The loss trend was decreasing, 
signifying that all four agents were converging. Following an initial stage of random 
exploration, ​agent0 (blue)​ begins to succeed in collecting the majority of the rewards. ​Agent3 
(red)​ adapts to this emerging threat and builds a strategy to maximize its reward while 
competing with ​agent0​, whose reward begins to decrease. Near the end of training, ​agent1 
adjusts its strategy to account for the other two dominant agents, gaining higher reward. 

 
Figure 4. ​Quantitative results for the Baseline environment with four agents. 
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The results for the Survival environment are slightly less definitive due to its increased 
complexity. The loss plot shows a decreasing trend, but the magnitude of the loss is still 
much larger than other environments; a longer training loop would allow the loss to stabilize. 
The oscillating behaviour in the reward plot also suggests a need for an extended training 
period.  
 

 
Figure 5. ​Quantitative results for the Survival environment. 

 
The training results were also recorded in video formats for evaluation purposes, and the 
qualitative assessment of the agents' ability to survive was based upon whether the agents 
could visibly navigate to the food/sleep sites. For further research purposes, the models 
trained on the baseline environment were applied to navigation and survival environments to 
observe the effects of transfer learning. See these videos on our website [10]. 
 
Discussion and Learnings 
 
Although the models in each environment converged so that one of the agents ‘won’, this 
does not signify that models of the ‘losing’ agents did not converge; rather,  they are 
temporarily being defeated by another model that converged to a more optimal policy during 
training. For example in the Baseline 2 environment, three agents rush towards the nearest 
door to collect the food but they all get stuck trying to enter at the same time. The fourth 
agent recognizes this and enters through the far door, travelling extra distance but reaching 
the food first [11]. This is an exhibition of autocurricula, as observed in other RL problems 
[9]: one agent inevitably finds a better solution to the problem, making the environment more 
difficult to solve for other agents. In the future, training for longer or introducing more 
complexity to the environment might allow us to see the losing agents emerge as the eventual 
winner. 
  
We also found that although a model may find the set of actions leading to the highest 
reward, it may not be converging to a set of actions that meet our actual intention, which is 
for agents to actually survive. Whether these two things align is dependent on the reward 
function, and early on our reward function was not representative of our desired outcome. As 
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a result, we found simplifying the environment and reward could act like creating an ‘overfit 
dataset’, which would allow us to first concentrate on debugging our neural network. 
 
Ethical Framework 

 
The Darwin project can be considered as a research effort in the field of RL. Stakeholders are 
listed below:  

1. RL researchers  
a. The environments, reward, and model that we designed can be applied 

elsewhere. The environments can be used to train and test other RL 
algorithms, and mathematical concepts reward functions and model 
architecture can be evaluated in the design stage of other projects.  

b. High beneficence/nonmaleficence; low autonomy as our project can hinder the 
work of other researchers who hope to pursue similar research. 
 

2. Team Darwin 
a. As the project involves RL, we were able to explore a different branch of 

machine learning compared to supervised learning that was taught in class, 
allowing us to explore more opportunities involving RL in the future. 

b. High beneficence/non-maleficence/autonomy.  
 

3. Robotics companies and research institutes  
a. An important application of the Darwin project is transfer learning [12]. 

Robotics companies could apply our models/simulation to train complex 
robots that otherwise require significant resources to develop and test. 
However, with the help of concepts in this project like simulation, their 
process could be optimized.  

b. High beneficence/non-maleficence/autonomy.  
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Appendix 
 
Appendix A: Formulation of a typical RL problem 
 

  
A typical RL problem is framed as the following: given a physical environment and a number 
of agents, design an algorithm (i.e, NN) that optimizes the agents’ actions with respect to 
their states and rewards throughout the simulation. Hence, the ‘data’ that is being 
continuously collected and processed as the input to the model is: 1) Agents’ current states; 
2) The rewards (represented as continuous numbers) associated with the agents’ current states 
(note: every agent, in 1 state, has only 1 reward that is generated by the environment).​ By 
calling the environment to take a single “step”, the environment object updates all the 
objects in the environment itself and returns a list of variables that contains states and 
rewards​.  
 
Appendix B: Key terms in RL 
 

1) Environment​: Physical world in which the agent operates.  
2) State​: Current situation of the agent. Often used interchangeably with “​observations​”. 

Every agent, after taking one action, has a set of observations that are collectively 
referred to as the agent’s current state. 

3) Reward​: Feedback from the environment.  
4) Policy​: Method to map agent’s states to actions.  
5) Value​: Future reward that an agent would receive by taking an action in a particular 

state. 
 
Appendix C: Metrics of Success in RL 
 
The training and evaluation process for agent survival using RL was quite different compared 
to supervised learning; unlike a classification or regression problem where the performance 
of the model itself can be represented numerically (e.g. accuracy, confusion matrix), RL 
agents can be evaluated on the reward it collects over the steps. In addition, if the agent 
utilizes a neural network to optimize its policy, an added metric of loss can be used to 
determine whether the model is converging.  
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