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1 Introduction

In recent years, advanced agricultural automation has increased productivity by reducing
production costs and manual labor while increasing yield and quality [1]. However, many
tasks are still completed manually and limitations exist in automating tasks on a large scale.
As a team we have decided to create FRINN, a project whose goal is to identify the type of
an input fruit and its state, either being ripe, unripe, or rotten. The main motivation and
uses for this project are:

• Decrease food waste by identifying rotten fruit in a batch at an early stage to prevent
spreading to other fruits during transportation or storage. Can be employed at large
agricultural scales and also at local grocery stores when receiving new fruit stock.

• Increase efficiency at the agricultural level by automating the prediction of fruit states
and therefore optimizing harvests

• Identifying fruit with a network can ease cashiers’ jobs when processing fruit as cur-
rently cashiers need to remember serial codes to input into the register (minimizing
human computer interactions)

The motivation behind the use of a neural network relies on the fact that currently
humans are required to manually sift/look through fruit which can potentially decrease yield
and increase labour. Classification of fruit ripeness with machine learning can be leveraged
as fruit images are translationally invariant and mimic the wide range of possible orientations
they can be in [2]. Additionally, some traditional methods using computer vision without
machine learning are currently lacking and under performing and do not capitalize on the
use of large fruit image databases [3-4].
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2 Illustration/Figure

Figure 1: Illustration of project idea and model architecture
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3 Background & Related Work

Before the recent machine learning (ML) advances, the main approach for fruit state identi-
fication was with OpenCV and image segmentation, which produced decent results but has
limitations. Recently ML approaches for quality of fruit identification have been investigated
by many researchers, resulting in papers regarding feature analysis, architecture choice, and
reframing fruit feature detection as an image segmentation problem (i.e fruit vs. background)
[5-7]. Upon further research, we have found that the use of a CNN model outperforms non
ML computer vision approaches [8].

Fruit identification using ML has also been explored by agricultural companies. For ex-
ample, SeeTree is a leading agri-tech company that uses deep learning to help robots opti-
mize the harvesting process [9]. They implemented drones to automatically identify ripeness
of oranges on trees as shown below, and overcame issues of small datasets and noise in photos.

(a) Data collection by SeeTree using drones [9] (b) Detection of ripeness using CNNs [9]

Figure 2: Fruit state identification by SeeTree [9]
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4 Data and Data Processing

Our data comes from two sources: the Fruits Fresh and Rotten (FFR) dataset from Kaggle
and self-collected images. Manually collected data involved screenshotting from stock image
websites, as well as photos taken on our phones for later testing. The sources of all data are
described in detail in Table 1.

Source
States

(3 labels)
Fruits

(5 labels)
Number of Images Applied Data Augmentation

FFR (Kaggle) [10]
Ripe

Rotten

Apples
Bananas
Oranges

12,772 No

Online Unripe
Apples

Bananas
Oranges

450 Yes

Online
Ripe

Rotten

Apples
Bananas
Oranges

600 Yes

Online
Ripe

Rotten
Unripe

Strawberry
Raspberry

900 Yes

Phone Ripe
Apples

Bananas
Strawberries

50 No

Table 1: Sources of Data

Data augmentation was performed using nine transforms from the Python imgaug library,
shown in Figure 1 [11]. These transforms were chosen as they retain colour information, as
opposed to transforms that adjust alter brightness and saturation, which can affect predic-
tions of type and state. The augmentation resulted in approximately 27,000 usable images,
but these were distributed unequally (Figure 3). To minimize pre-biasing, we equalized the
dataset to contain 1000 images in each of the 15 classes (Figure 4). Despite removing a large
percentage of examples, our model reached high final accuracies and we had the option of
increasing the dataset if needed. We used a train/validation/test split of 64%/16%/20%.
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Figure 3: Data Visualization after Augmentation

Figure 4: Data Visualization of Balanced Dataset

Below in Figure 5 we are also showing input examples to our model and data augmented
images, as well as how it is labelled.

Figure 5: From left to right: original, vertical flip, rotation by 45 degrees, salt and pepper
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5 Architecture

By using random hyperparameter search, we derived two final models, one multi-headed
CNN model with transfer learning and one without transfer learning. Since the transfer
learning outperformed the non-transfer learning model, only the transfer learning model will
be discussed. The model takes 224 by 224 RGB image inputs which go through pretrained,
frozen VGG-16 as well as one additional trainable convolutional layer with batch norm,
pooling, and ReLU. Then it is passed onto two separate 3 layer MLP heads where the first
head classifies ripeness and the second classifies the type of fruit. Each MLP has ReLU
applied after each linear layer and Sigmoid applied at the last layer. The cross-entropy loss
of the two MLP heads is summed before using an SGD optimizer to adjust the weights. The
model was trained using a batch size of 64. The model-specific hyperparameters are seen in
Table 2 and the number of trainable and non-trainable parameters are shown in Figure 6.

Number
of Kernels

Kernel
Size

Learning
Rate

# of Neurons
in state head

# of Neurons
in Type Head

# of
Epochs

Multi Head
with transfer
learning

512 3

0.1 with
reduce on
plateau
with patience 3

4096,4096,3 4096,4096,5 20

Table 2: Model Specific Hyperparameters

Figure 6: Model summary screenshot
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6 Baseline Model

Our baseline model was composed of two random forests, one for state prediction and one
for type prediction. The 224 by 224 RGB image input was normalized then converted into
64 mean value and 64 standard deviations by extracting them from 64 non-overlapping
quadrants. The 128 numbers each representing a single image were used in a random forest
algorithm that contains 100 trees and uses information entropy.

7 Quantitative Results

To quantitatively demonstrate the results of our models and project as a whole, we have
decided to include the final test accuracy table, recall and precision, accuracy/loss plots,
and the confusion matrices for state, type, and overall classification. The final test accuracy
table shows our model’s performance in comparison to other models. We included recall and
precision for state and type to compare the impact of false negatives and false positives in
each category. The accuracy plots show whether the model overfits during training. The loss
plots show whether two MLP heads converged to the same loss during training rather than
competing. The confusion matrices give insights on which classes performed best or worst.

Model State Type Total
Random Forest

Baseline
87.5% 82.2% 84.9%

Multi-head CNN
(No transfer

learning)
98.1% 95.9% 97.0%

Multi-head CNN
(with transfer

learning)
99.3% 99.4% 99.3%

Table 3: Final Test Accuracy Table

State Precision Recall
Ripe 0.98 0.99

Rotten 0.99 1.00
Unripe 1.00 1.00
Type Precision Recall
Apple 1.00 0.99

Banana 1.00 1.00
Orange 0.99 1.00

Raspberry 0.99 1.00
Strawberry 1.00 0.99

Table 4: State and Type Precision and Recall
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Figure 7: Training and Validation Accuracy and Loss Plots
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(a) (b)

(c)

Figure 8: Confusion Matrix
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8 Qualitative Results

Our model was able to achieve a high accuracy on our dataset, but we did encounter a small
percentage of misclassifications. We believe these occurred due to inherent fruit properties
such as shape, color, and rotting stages and also prompted the use of specialized test sets to
test some hypotheses.

Correct Classifications

Our model did have many correct classifications with some shown below. We believe our
model’s high accuracy is attributed to the shared feature space of state prediction and type
prediction leveraged by shared convolutional layers.

Figure 9: Sample of Correct Classifications

Misclassifications

• Type prediction: Given the above confusion matrices we know that the model strug-
gles with differentiating apples and oranges. As shown in the misclassified images be-
low, we think this is due to the inherent similar circular shape between apples and
oranges compared to other fruits. This is even more apparent when differentiating
unripe oranges vs. unripe apples which are not only both circular but also both green.

Figure 10: Sample of Misclassifications
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• State prediction: We believe that the model is sometimes confused when trying to
predict the rotten class as the stages of a fruit rotting are numerous and the rotting of
some fruits are not as apparent as others. For example, some fruits rot from the inside
whereas some grow white mold. The apple shown below on the left is rotten and was
classified as ripe. It does not have white mold, so we believe the model is classifying it
to be ripe due to the lack of white mold that is very apparent on a majority of training
samples such as rotten oranges, raspberries, strawberries in Figure 11. This could be
mitigated during the data collection phase by choosing more explicit rotten cases and
finding rotten pictures for different fruit that have common features (i.e. rotting of
apple at later stage where there is white mold).

Figure 11: Rotting of different fruits (right fruits have white mold, left fruits rot differently)

Specialized Test Sets

With the use of specialized test sets we were able to test hypotheses we had about our
model. We were concerned that the model was being biased by the background of the fruits,
as for example unripe fruits are green found on a green background (i.e still growing on a
tree/bush). We created 3 specialized test sets (white background, green background, varied
color background) to test our model and ultimately found that the background did not affect
the model’s prediction.

Figure 12: Samples from the specialized test sets
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9 Discussion and Learnings

From the test accuracies shown in Qualitative Results, it is evident that our final model
performed well in completing fruit classification and ripeness identification. A key factor
in the high accuracies is likely the shared convolution layers in the multi-head architecture.
When exploring different neural network architectures, we encountered the multi-head as
a way to reduce parameters when solving related problems. This is because the common
convolution and pooling layers produce a feature map usable by both heads.

The accuracy plots show that our model did not overfit while the loss plots show conver-
gence in the overall loss. Since we are summing up two losses from each output head, the
losses must not compete for the model to be successful. The confusion matrices show that
the model performed well, but was confused between fruits with similar shapes or colors. The
state confusion matrix shows that the model performs worse on classifying the rotten state.
It is important to reduce false negatives in the rotten state as one rotten fruit could spoil
the others. As seen in Table 4, recall and precision analysis on the rotten state shows the
number of false negatives is lower than that of false positives. Despite the relative weakness
of rotten, the model is still proficient in classifying states overall.

Observing our qualitative results, the small percentage of misclassifications are due to
inherent properties of the fruit and a wide variety of conditions that are considered “rotten”.
Our incorrect hypothesis of background variety was resolved with specialized test sets, which
we learned is an effective strategy to investigate potential problems. However, our model
is still vulnerable to image properties, specifically in photos of fruits collected using our
iPhones. As exemplified in Figure 15, images where the fruit is covered in shadows would be
incorrectly predicted as rotten. This suggests real world data can be different from training
data and should be accounted for, and neural networks should train on data similar to the
expected input of stakeholders.

Figure 13: iPhone image examples and predictions demonstrating effect of shadow
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Other changes we would implement if redoing the project are ensuring data is high qual-
ity before training and starting automated hyperparameter search earlier. To explain, most
of the datasets from initial research were unusable due to repeated photos. We would also
ensure the data is as similar to real-world data as possible and explore sources other than
internet websites. Also, as training times are long it would have been more efficient to au-
tomate training over ranges of hyperparameters to allow for overnight training.

10 Ethical Framework

To explore the ethical implications of our project, we first identify possible stakeholders.
This includes different institutions such as farms and grocery stores, as well as individuals
such as employees, customers, and transport workers.

Our project is largely framed around beneficence and nonmaleficence, creating value by
saving time and reducing food waste. The corresponding risks are loss of profit and wasted
fruit due to misidentifications, but these have been minimized as our model reaches 98-99%
accuracy. Customers and transport workers are minimally affected, but benefit from encoun-
tering less rotten fruit.

Regarding respect for autonomy, only stakeholders in management positions have control
over the impact of the model. For example, they could employ a single worker to oversee
mass-sorting by the model, or use the model as a final check after hand-sorting. However,
employees at lower levels are at risk of losing jobs if automation is successful. Therefore,
despite the benefit of faster fruit sorting and giving more choice to some stakeholders, other
stakeholders may experience a decrease in autonomy.

Lastly, a major strength of the project is exemplifying justice by being equally useful
for all stakeholders. For example, farms of all sizes (family, corporate) can use the model.
Images are universally available if users have a camera, and labels can be easily translated
to allow foreign language accessibility. Furthermore, the model can be modified for different
fruits if appropriate datasets are obtained.
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Neural Networks in Agriculture: The Journal of Agricultural Science.” Cambridge
Core, Cambridge University Press, 25 June 2018,

[9] “See Tree: AI Prototype for Ripe Fruit Detection.” Ciklum.

[10] Kalluri, Sriram Reddy. “Fruits Fresh and Rotten for Classification.” Kaggle, 24 Aug.
2018.

[11] Aleju, “aleju/imgaug,” GitHub. [Online].

15

https://itif.org/publications/2019/10/15/robotics-and-future-production-and-work
https://itif.org/publications/2019/10/15/robotics-and-future-production-and-work
www.researchgate.net/publication/323064558_Deep_learning_implementation_using_convolutional_neural_network_in_mangosteen_surface_defect_detection.
www.researchgate.net/publication/323064558_Deep_learning_implementation_using_convolutional_neural_network_in_mangosteen_surface_defect_detection.
https://www.vicos.si/Downloads/FIDS30
https://www.mdpi.com/2227-9717/7/12/928
https://www.mdpi.com/2227-9717/7/12/928
https://www.mdpi.com/2227-9717/7/12/928
https://www.nature.com/articles/s41438-020-0323-3
https://www.nature.com/articles/s41438-020-0323-3
https://www.nature.com/articles/s41438-020-0323-3
www.researchgate.net/publication/321475443_Fruit_recognition_from_images_using_deep_learning.
www.cambridge.org/core/journals/journal-of-agricultural-science/article/review-of-the-use-of-convolutional-neural-networks-in-agriculture/15B08C5CDD85F21EEEFAFE7387536149.
www.cambridge.org/core/journals/journal-of-agricultural-science/article/review-of-the-use-of-convolutional-neural-networks-in-agriculture/15B08C5CDD85F21EEEFAFE7387536149.
www.cambridge.org/core/journals/journal-of-agricultural-science/article/review-of-the-use-of-convolutional-neural-networks-in-agriculture/15B08C5CDD85F21EEEFAFE7387536149.
https://www.ciklum.com/case-studies/seetree/
https://www.kaggle.com/sriramr/fruits-fresh-and-rotten-for-classification
https://www.kaggle.com/sriramr/fruits-fresh-and-rotten-for-classification
https://github.com/aleju/imgaug

	Introduction
	Illustration/Figure
	Background & Related Work
	Data and Data Processing
	Architecture
	Baseline Model
	Quantitative Results
	Qualitative Results
	Discussion and Learnings
	Ethical Framework

