
ECE324: Final Report - Monumentum

Arsh Kadakia (1005228451), Sepehr Hosseini (1005082232), Haoran (Jayce) Wang (1004927163)

December 6, 2020
Word Count: 1988, Penalty: 0%

1 Introduction
The broad vision for our project Monumentum is to enrich tourism by providing tourists the background
information they need to fully appreciate the history and significance of their destinations. To realize this vision,
the supporting core technology and our main goal is to recognize a landmark or location given an image. Our
approach is centered around image-based input as we believe taking photos with smartphones would be one
of the most convenient ways to query information as it does not require any preliminary knowledge from the
tourist regarding their location or landmark. Due to the sheer number of existing landmarks along with the
variability of image-based input, the recognition process must be both scalable and generalizable. Therefore, we
believe machine learning is an appropriate tool for the task.

2 Illustration / Figure

Figure 1: Illustration of data processing and training pipelines.

3 Background and Related Work
Many models were built to succeed on the GLDv2 dataset. A notable example is the 1st-place solution for
the dataset [1]. An EfficientNet model was trained on a smaller version of the Landmark dataset. The final
model then applied transfer learning using weights from the original model and retrained the fully-connected
portion on the full dataset. The success of transfer learning on this dataset made it a promising approach for
this project.

In order to remove "irrelevant" images in the dataset, the 1st-place solution also used DELF (Deep Local
Features), a machine-learning pipeline that analyze and rank the images of the dataset based on how many

1



common features (inliers) they had with other images within the dataset [2]. This approach was interesting
to us because it demonstrated how we could keep only images that had strong similarity to a set of reference
images we chose (allowing us to customise the dataset to our expected distribution).

4 Data and Data Processing
The primary source of the data is taken from the GLDv2 Dataset consisting of over 5 million images and 203K
classes, where each class represents a unique landmark consisting of several images of that landmark. The labels
in this dataset correspond to a unique landmark ID ranging from 0 to 203093 (e.g. 70644 corresponds to the
Sonnenstein Castle). The overall framework for collecting and handling this data is shown in Figure 2 below.

Figure 2: Framework used for Data Processing.

4.1 Dataset Scoping and Web Scraping
The first step in scoping was to take one subset of all the classes. The original dataset consisted of anywhere
between 1 to 1000+ images per class, so we selected 50 classes, each ranging from 400 to 700 images. This
ensured our dataset was relatively balanced while having enough images to learn from. From these 50 classes,
we selected 26 to further lower the size of the dataset. We merge this with our webscraped images (2 images per
class) using Selenium [3]. By this point we had 11.3K images across 26 classes.

4.2 Cleaning and Filtering with DELF
Due to the crowd sourced nature of the dataset, several classes consisted of images that inaccurately represented
the class. To remove these images, we took advantage of a filtering mechanism DELF (Deep Local Feature),
pretrained on the GLDv2 Dataset with source code found on GitHub. This software takes in two images as input,
and returns the number of inliers (matching features) between them. For our purposes, we compared all images
of a given class with 3 "representative images" for that class. If the number of inliers between an image and all 3
representative images for that class is below a given threshold (chosen as 20), then we discard that image.

Figure 3: Example of inliers found between images.

4.3 Balancing and Finalizing Dataset
To ensure certain classes are not over/under represented, we perform balancing. Our methodology for balancing
is that for any given class, when the total number of images is above a "target" then we discard any extra images,
and when it is below then we augment (with Horizontal flip, Gaussian Noise, Cropping) to make up for the
missing images. Our target is the median of images per class across all classes. Finally, the all images in the
dataset are resized to 128x128 and normalized. The final dataset consists of 26 classes, 299 images per class, and
7.7K total images. The dataset is split into train/validation/test (80:10:10) and ready to be passed in.

2



5 Architecture
We trained many interesting models to see which one performed the best. The first model was the baseline
LeNet model (described in Section 6).

The second model was the VGG16 model, with 13 convolutional layers and 3 fully-connected layers [4]. The
fully-connected portion takes in a 25,088-dimensional convolutional output and its first & second layers consist
of 4096 nodes, followed by a ReLU activation and Dropout layer with dropout probability of 0.5. The final linear
layer ends in 26 nodes due to the 26 classes within the dataset with a softmax activation.

Figure 4: Definition and Illustration of VGG [4].

The third model was the ResNet-34 model, with 33 convolutional layers and 1 fully-connected layer with softmax
activation [5]. This layer takes in a 512-dimensional convolutional output and provides a 26-dimensional output.

Figure 5: Illustration for ResNet-34 [5]. The dotted lines represent shortcuts with convolutional layers instead of regular
"skip connections" that transform the input feature map to the required output channel size for summation. See Figure 7
for a more detailed explanation. Note that the /2 at the beginning of every colour change is referring to a stride of 2.
This is a property shared between ResNet34 and ResNext101.

Figure 6: Model Definition for ResNet-34, ResNet50 and ResNet101 [5].

The final model was the ResNext101 model, with 100 convolutional layers and 1 fully-connected layer with
softmax activation [6]. This layer takes in a 2048-dimensional convolutional output and returns a 26-dimensional
output. A notable refinement our group made was adding an extra fully-connected layer of 2048 nodes with
Dropout (probability 0.5) before the final layer to increase accuracy and reduce overfitting. This version of
ResNext is called "Modified ResNext" in comparison to the "Original ResNext".

In the convolutional portion of ResNet-34 and ResNext101, there are 4 "superblocks", each with varying
number of 2-layer blocks. ResNext101 follows a similar definition to ResNet101 in Figure 6. Three notable
changes are the inclusion of feature paths (seen in Figure 7), the different input channel size of 32 to the 1st

3



Figure 7: Illustration of a "block" in ResNet101 & ResNext101 [6]. In ResNet-34, the input passes through a set of
convolutional layers and is then summed with the output from that set. In ResNext101, the input is sent through 32
different paths and is summed with the output from all paths.

superblock and how input channels to every superblock are decreased by a factor of 2.

Finally, note that the convolutional portion for each model (except for the baseline) are frozen with pre-
trained weights on the ImageNet dataset. Only the fully-connected portion are trained for those networks, as
the approach of transfer learning is utilised for the problem.

6 Baseline Model
The chosen baseline model is the architecture known as LeNet. LeNet is a small CNN with two convolutional
layers followed by three fully-connected layers. Both convolutional layers use a kernel size of 5 by 5 and stride
1 with output channels 6 and 16 for the first and second convolutional layers respectively. Furthermore, both
convolutional layers are followed by an average pooling layer with kernel size 2 by 2 and stride 2. The first two
fully-connected layers have 120 and 84 neurons while the last one has as the same number of neurons as output
classes (26 in our case).

Figure 8: Illustration of LeNet architecture. Note the input dimensions shown are 32x32x1 with 10-dimensional output
while ours were 128x128x3 with 26-dimensional output. [7]

7 Quantitative Results
For our models, top-1 test accuracy was the primary evaluation metric. This metric is defined as the percentage
of predictions in which the true class matches the most probable class. This metric was chosen as our goal was
to see how well our models could correctly generalize to unseen images. The final test results are as follows:
The best model is the Modified ResNext, with 2 fully-connected layers with Dropout before the final layer, with
a maximum test accuracy of 95.7%.

A confusion matrix was also generated (see Figure 10) to understand the vulnerabilities of the model. Further
comments will be made regarding them in the Section 8.

4



(a) Model plots of test accuracy. (b) Magnified Figure 9a for top 3 models. (c) Test loss versus epoch for all models.

Figure 9: Plots of Top-1 test accuracy and loss for different models. Note that accuracy in Figure 9b is not exact, and
is slightly smoothed to allow for visual ease.

Table 1: Statistics and best hyperparameters for all models, ranked from best to worst maximum test accuracy.

Models Maximum
Test
Accuracy

Conv.
Layers

Trained FC
Parameters
(M)

Total
Parameters
(M)

Optimizer Learning
Rate

Batch
Size

Epochs

Modified
ResNext

95.7% 101 4.25 91.1 Adam 0.0005 12 150

Original
ResNext

94.8% 101 0.0533 86.8 Adam 0.001 16 150

VGG16 94.0% 13 119 134 Adam 0.001 16 150
ResNet-
34

83.3% 33 0.013 21.3 SGD 0.001 16 150

Baseline 60.4% 2 1.61 1.61 SGD 0.01 16 150

Figure 10: Confusion matrix for ResNext101.

8 Qualitative Results
Two notable vulnerabilities that emerge are the 4 incorrect predictions of class ID 103899 (the Hurricane Ridge
mountain) instead of the actual class ID 70644 (the Sonnenstein castle) and 6 incorrect predictions of class ID
173511 (the Purana Qila fort) [8].

5



These vulnerabilities were determined by considering the most incorrectly predicted classes. Out of around
31 predicted test examples for each class, it can be seen that class ID 103899 and 173511 are the two most
incorrectly predicted classes. Upon examination of their incorrect classifications, the following Figure 11 emerges.

(a) Incorrect classification of class ID 103899 (left) for actual class ID 70644 (right).

(b) Incorrect classification of class ID 173511 (left) for class ID 80272 (The Marmashen Monastery) and 107801 (The Red Fort).

Figure 11: Visual illustration of notable incorrect classifications for the model.

In Figure 11a, the common feature between both images is the trees. Therefore, it can be concluded that the
model struggles at classifying correctly test images for different classes when there are common features (like
trees) between them.

In Figure 11b, the model incorrectly predicts class ID 173511 for other classes. A possible reason is how
all 3 images (each corresponding to a different landmark) share the common feature of circular brown stone
towers. Due to their visual similarity in terms of structure, the model incorrectly predicts these classes.

9 Discussion and Learnings
Considering 26 output classes, we believe that our final ResNeXt-101 model performed very well considering the
achieved test accuracy. This proves that our model was able to generalize very well on data it has never seen
before. Our results are further validated as randomly guessing predictions on our problem would only yield an
accuracy of 1/26, or 3.84%.

From academia, we had preconceived notions that our ResNet-34 model would perform better than VGG16 as
ResNet-34 did not only have more convolutional layers, but the advent of residual connections seemed to be a
breakthrough in boosting performance of modern CNNs [5] [9]. To our surprise, our VGG16 model performed
much better than ResNet-34 and almost on-par with our ResNeXt models. On closer analysis, we attributed
the unanticipated success of VGG16 to its large fully-connected layers (Figure 4), which contributed to most
of VGG16’s parameters. This is in contrast to ResNet-34’s single fully-connected layer (Figure 5), which in
our context was only 26 neurons. Ultimately, this finding made sense as we only trained the fully-connected
layers for both networks, thus the large number of variable parameters in VGG16 allowed it to learn much more
complex relationships that a single classifier layer in ResNet-34 simply did not have the capacity to.

Figure 12: Plot of max test accuracy versus total parameter count for models in Table 1 with an exponential fit

6



By further analyzing the relationship between parameter count and test accuracy of the models we experimented
with (data from Table 1), we found an interesting exponential relationship (as seen in Figure 12). While adding
more parameters did help to increase generalization performance, there are clear diminishing returns as an
improvement of 20% test accuracy from the baseline took a 20x increase in parameter count while a 35% increase
required approximately 90x. Understanding this relationship will be useful in analyzing the trade-off between
computational requirements and desired performance of neural networks when required in future projects.

Figure 13: Effect of DELF and Augmentation on Overall Model Performance

Finally, we also attribute our success to our implementation of the DELF pipeline to filter out irrelevant images
from our dataset, which taught us the importance of spending time with our data to ensure it is of optimal
quality for our applications. Without DELF, we could visually see for certain classes that some validation/test
photos were completely uncorrelated with any training photos (Figure 2). This made sense given the worse
validation accuracy (Figure 13) without DELF as those types of photos were simply too anomalous for our
network to reliable classify.

10 Ethical Framework
The primary stakeholders involved with respect to Monumentum are individuals seeking to gain insight towards
certain landmarks (typically tourists), tour guides or other services that help inform individuals curious of certain
landmarks, and the environment.

10.1 Tourists, Tours, and Other Services
With the significant amount of data being available online, simply knowing the name of a landmark gives access
to a lot more information. Although many individuals would still appreciate tours and services for learning
about landmarks, Monumentum could potentially undermine their influence and necessity. On the other hand,
Monumentum respects the autonomous decisions of people. People are free to make their own decisions and
learn about landmarks in any way they see best fit, so Monumentum is not directly inflicting harm against these
services, but simply providing tourists with an extra option and the means of beneficence.

10.2 The Environment
Currently Monumentum is relatively low scale, only totalling to around 7.7K images and does not require high
amounts of energy consumption. There is a clear trade off between beneficence (purely designed for the purpose
of helping others), and the resources and energy consumed as the dataset and scale of the project begins to
increase. If the number of landmarks being trained on were to increase, which could very likely be the case
with so many different landmarks across the world, it is essential to look for ways to lower energy consumption,
potentially by researching ways to lower the parameter count.

7



References
[1] S. Jeon, 1st place solution to google landmark retrieval 2020, 2020. arXiv: 2009.05132 [cs.CV].

[2] Waelkh, Landmark2020-delf model amp; submission code, Jul. 2020. [Online]. Available: https://www.
kaggle.com/waelkh/landmark2020-delf-model-submission-code.

[3] A. Suresh, Web scraping images from google, Mar. 2020. [Online]. Available: https://medium.com/
@wwwanandsuresh/web-scraping-images-from-google-9084545808a2.

[4] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2015.
arXiv: 1409.1556 [cs.CV].

[5] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2015. arXiv: 1512.03385
[cs.CV].

[6] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural
networks, 2017. arXiv: 1611.05431 [cs.CV].

[7] Neural networks¶. [Online]. Available: https://pytorch.org/tutorials/beginner/blitz/neural_
networks_tutorial.html.

[8] T. Weyand, A. Araujo, B. Cao, and J. Sim, Google landmarks dataset v2 – a large-scale benchmark for
instance-level recognition and retrieval, 2020. arXiv: 2004.01804 [cs.CV].

[9] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, Inception-v4, inception-resnet and the impact of residual
connections on learning, 2016. arXiv: 1602.07261 [cs.CV].

8

https://arxiv.org/abs/2009.05132
https://www.kaggle.com/waelkh/landmark2020-delf-model-submission-code
https://www.kaggle.com/waelkh/landmark2020-delf-model-submission-code
https://medium.com/@wwwanandsuresh/web-scraping-images-from-google-9084545808a2
https://medium.com/@wwwanandsuresh/web-scraping-images-from-google-9084545808a2
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1611.05431
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://arxiv.org/abs/2004.01804
https://arxiv.org/abs/1602.07261


Note this page is not included in word count

Haoran Wang
Permission to post video: Yes.
Permission to post final report: Yes.
Permission to post source code: Yes

Arsh Kadakia
Permission to post video: Yes.
Permission to post final report: Yes.
Permission to post source code: Yes

Sepehr Hosseini
Permission to post video: Yes.
Permission to post final report: Yes.
Permission to post source code: Yes

9


	Introduction
	Illustration / Figure
	Background and Related Work
	Data and Data Processing
	Dataset Scoping and Web Scraping
	Cleaning and Filtering with DELF
	Balancing and Finalizing Dataset

	Architecture
	Baseline Model
	Quantitative Results
	Qualitative Results
	Discussion and Learnings
	Ethical Framework
	Tourists, Tours, and Other Services
	The Environment


