
ECE 324 Project Proposal - REScipe
Shawn Zhang (1005154921), Jiakai Chen (1004800539), Steven Zhong (1004946437)

Word Count and Penalty: 1991 words (0% penalty)

1. Introduction

The goal of REScipe is to output a possible recipe given a food image. While browsing the internet or
social media, we commonly see photos of appetizing dishes that may not come with a name or a recipe.
Our project recommends a recipe to make the dish by finding a recipe image, with features similar to the
food image, in a large database. Our project aims to motivate people to gain more experience with home
cooking. Machine learning is required as images of dishes are highly variant, and a neural network can
effectively extract a dish’s features for this task.

2. Project Figure

3. Background & Related Work

One of the related papers would be “Classifying food images represented as Bag of Textons”, where the
researchers attempt to classify fast food from the Pittsburgh Fast-Food Image Dataset (PFID) into
categories such as hamburger, taco, crispy chicken thighs and more using a Bag of Textons approach [1].
The images are stored as a vector of occurrence counts of local image features/textures (hence “bag of
textons”) and used SVMs to classify the 61 classes with a 67% average classification accuracy.

Another related work would be the not yet released DeepChef, found on Github under
Murgio/Food-Recipe-CNN [2]. This work utilizes deep convolutional neural networks with Keras for the
classification of 230 recipe categories from a German Recipe database. It uses approximate nearest
neighbours to determine similar recipe images and uses a CNN to classify an input image as one of the
recipe categories.

4. Data Source, Processing and Labeling

Data collection was done by web scraping allrecipes.com. We used a web scraping library for cooking
websites to create our raw dataset, which consists of the recipe title, image source, ingredients, recipe, and
others, by iterating through a large range of recipe URLs. We removed ones with the default “no image”
image and collected 46904 recipes.

“Raw Data sourced from allrecipes.com”

We processed the images to reduce memory usage and to increase the amount of training data. We resized
all images to the size of 224x244x3(RGB) and generated 5 augmented images with cropping and colour
jitter for each.

“Resized Original Images”

We processed the recipe titles to generate lower-dimensional labels for training. We used the
“en_core_web_sm” spaCy model to tokenize and lemmatize the titles and to remove stop words. To
compensate for spaCy’s poor plural-to-singular conversion, we used the “inflect” library. We cleaned the
dataset by removing titles containing no common token or consisting of a single uncommon word. The
filtered dataset contains 46659 recipes with a generally balanced distribution of tokens.

“Titles to Tokens”

“50 Most Common Tokens”

We used the filtered dataset to train a Latent Dirichlet Allocation (LDA) model for label generation. First,
we used Gensim to convert titles to “TF-IDF” representations. Then, we set up the training environment
for the LDA model and tuned its hyperparameters by inspecting topics and evaluating term-related recipes
of common tokens.

“Topics & Term-related Recipes”

After finishing training, we used the LDA model to produce a 300-element label for each recipe title and
filtered out ones with poor probability distributions after normalization. At last, the dataset has 45151
labelled recipes.

“Tokenized Titles with Labels”

Finally, the training set consists of 200000 images(original+4 augmented). The validation set consists of
40000 images(augmented). The testing set consists of 6600 completely new images. The train/val/test
split is roughly 81/16/3. We choose to split the dataset by samples rather than by percentage so as to save
our data files more comprehensively in integer batches.

5. Architecture

ResNet-34 with Fully-connected Layers​ (demonstrates overfitting)

ResNet-50 with Fully-connected Layers

ResNet-50 with Decoding Fully-connected Layers

(All use MSELoss() and Adam optimizer)
To save memory and speed up training, we preprocess images into feature vectors by storing the outputs
of convolutional layers. During our training, feature vectors are input into fully-connected layers. Later,
we will know this is problematic with ResNet models.

6. Baseline Model

Pre-trained Model ResNet-34 ​without fc1 and pool_time​(frozen)

Fine-tuned Model BatchNorm1d(4608),
Linear(4608,1024), BatchNorm1d(1024), LeakyReLU(), Dropout(0.15),
Linear(1024,1000), BatchNorm1d(1000), LeakyReLU(), Dropout(0.1),

Linear(1000,300), LeakyReLU()

Range of Learning Rate [0.001]

Range of Batch Size [512]

Epochs 120

Pre-trained Model ResNet-50 ​without fc1​(frozen)

Fine-tuned Model BatchNorm1d(2048),
Linear(2048,1024), BatchNorm1d(1024), LeakyReLU(),
Linear(1024,1000), BatchNorm1d(1000), LeakyReLU(),

Linear(1000,300), LeakyReLU()

Range of Learning Rate [0.001(when overfitting), 0.0003]

Range of Batch Size [64(when overfitting), 128, 256]

Epochs 120

Pre-trained Model ResNet-50 ​without fc1​(frozen)

Fine-tuned Model BatchNorm1d(2048),
Linear(2048,4096), BatchNorm1d(4096), LeakyReLU(), Dropout(0.15),
Linear(4096,4096), BatchNorm1d(4096), LeakyReLU(), Dropout(0.15),
Linear(4096,1000), BatchNorm1d(1000), LeakyReLU(), Dropout(0.1),

Linear(1000,300), LeakyReLU()

Range of Learning Rate [0.001(when overfitting), 0.0003]

Range of Batch Size [64(when overfitting), 128, 256]

Epochs 120

Pre-trained Model VGG-16 ​without fc​(frozen)

Fine-tuned Model BatchNorm1d(4096),
Linear(4096,1024), BatchNorm1d(1024), LeakyReLU(), Dropout(0.15),

VGG-16 is a classical CNN for image classification. It is shallower than ResNets but has more
parameters. We used the hyperparameters from the fined-tuned ResNet-34 to allow a comparison of
feasibility. A difference between the original two models was that VGG had 2 fully-connected layers,
while ResNets had only 1.

7. Quantitative Results
LDA Model

The LDA model was evaluated based on the number of unique topics and the accuracy of sample term
topics. They helped determine the label size, the training chunk size, and the number of passes. The best
LDA model has 298 unique topics with a term topic accuracy of 86%(129/150 terms).

“Number of Repeated Topics”

“Best Accuracy from Tuning & Example of a Term Topic”

NN Model

The decision function for the NN model was the cosine similarity with a threshold of 0.9. Since labels are
300-dimensional and normalized, cosine similarity is more demonstrative of performance than the
euclidean distance with a more arbitrary threshold.
The baseline VGG achieved 83% training accuracy, 70% validation accuracy, and 1% testing accuracy.

The ResNet-34 with FC layers achieved 37% on training, 8% on validation, and 0% on testing.

The results from ResNet-34 was concerning. The model suffered from both underfitting and overfitting.
To improve the performance, we switched to ResNet-50 with more complicated FC designs and train with
different batch sizes. We regularly stop the training to tune the hyperparameters.

Linear(1024,1000), BatchNorm1d(1000), LeakyReLU(), Dropout(0.1),
Linear(1000,300), LeakyReLU()

Range of Learning Rate [0.001]

Range of Batch Size [128]

Epochs 120

The ResNet-50 with the same design achieved 44% on training, 40% on validation, and 1% on testing.

The ResNet-50 with decoding design achieved 79% on training, 67% on validation, and 1% on testing.

(the chosen model is frozen before 130 epochs; the right figure is for testing accuracy only)

8. Qualitative Results

“Good Results - FC Vector of the Image and FC Vector of Dataset Recipe are similar.”

“Poor Results - Only images are similar; or they are completely different.”

Looking at the top two images, our model performs well when our input has similar features to those
mapped in our database. It generally does well on salads, soups, burgers, and vegetable dishes. However,
if the input features are underrepresented in our model (game board), it maps to a non-similar recipe or
midnight chocolate cake. This chocolate cake happens to account for many of the outputs. We speculate
that during LDA label creation and training, the chocolate cake feature vector is far away (euclidean
distance) from the rest of the recipes and would monopolize the feature space that contains the output of
unfamiliar inputs. This caused our test set performance to be very poor as the test set is from a completed
new distribution.

“Test Set with a Distribution of (New Image+5 Augmented)”

9. Discussion and Learnings

Our model performs well on the validation set that contains augmented images, meaning our model does
generalize to some degree. We believe our model performed somewhat poorly on the test set, but
foreseeable since it was out-of-data distribution. Our model generally performs well when our training
titles accurately represent the recipes with few/no extraneous words, when we have many of the same
types of food (e.g. burgers, salads), and their features are distinct from other food groups.
Besides the tuning of the model and architecture, its performance was also limited by a considerable
number of poorly named recipes and unclear images, as well as an unbalanced recipe representation.

What was surprising was that many of our outputs were the recipe “Midnight Chocolate Cake”. As
mentioned in the qualitative results section, this could be due to its feature vector being isolated from the
other clusters of feature vectors (clusters of burgers, salads), thus mapping all the images that aren’t
extremely similar to these clusters to the cake instead. We were also surprised at how “creative” and
unrelated some of the titles were to the recipe, which made our task difficult even after filtering out words
with few occurrences.

“Difficulty in LDA Modeling: Unrelated Naming”

If we were to do this again, we may use ingredients instead of titles since they are more consistent across
recipes. One reason that we went with titles was that we wanted our model to recognize larger food types,
such as burgers and cakes. An additional option would be to use glove vectors but would come with lots
of data cleaning such as minimizing the impact of spices and taking ingredient quantity into
consideration.

One thing we would be sure to try is unfreezing some of the ResNet layers and retraining with our data.
The outputs from the current pre-trained ResNet were too clustered to be used for further MLP training as
the outputs for the images all had cosine similarities above 0.99. This means that Resnet inherently picked
up the “food” class in its pre-trained residual blocks.

“Highly Similar Feature Vectors from ResNet Convolutional Layers”

Lastly, we could always simplify the problem to a strict classification between set categories such as
cakes and pies, but the use case for such a model is much more limited.

10. Ethical Framework

We identify two main stakeholders of our project as the recipe uploader and user because they are linked
to the input and the output of our project, respectively. Other stakeholders in this project include the
recipe creator (which may not be the recipe uploader), and us, the project creators.

A recipe uploader is an online blogger and is the source of our recipes. What they post on the website
directly influences the quality of our data pool. When they post great descriptions of their recipes and
upload clear images, our model is benefited by having more well labelled, unclustered data. By gathering
uploaders’ data, the ethical question of consent on data collection arises. The use of our model that
recommends recipes will decrease the autonomy of recipe uploaders/creators, since their data will be
shared on another platform without their direct permission. However, the collection of such data can
increase beneficence to the users as it allows a diverse recipe pool that we can source from.

A user will be inputting an image into our model and obtaining a recipe output. The output of our model
has potential influences on their diets since they are likely to try out the recommended recipe. This creates
a huge non-maleficence ethical issue from two aspects:
The use of our project may decrease non-maleficence to users by

● Recommending unhealthy food/version instead of healthy (bad for lifestyle)
● Recommending recipe that can cause an allergic reaction (may cause death)

As the creators, we understand that if our project were to be deployed in the real world, we would have to
take these issues into serious consideration. Such an example would be asking for the users’ allergies or
food preferences (low-sodium, vegan diet) and filtering out the recommendations accordingly.

References

[1] G. M. Farinella, M. Moltisanti, S. Battiato. Classifying food images represented as Bag of Textons.
2014 IEEE International Conference on Image Processing​.
https://ieeexplore-ieee-org.myaccess.library.utoronto.ca/document/7026055

[2] M. Serifovic. Murgio/Food-Recipe-CNN. ​DeepChef​. ​https://github.com/Murgio/Food-Recipe-CNN

https://ieeexplore-ieee-org.myaccess.library.utoronto.ca/document/7026055
https://github.com/Murgio/Food-Recipe-CNN

Permissions:
Jacky Chen

● permission to post video: yes
● permission to post final report: yes
● permission to post source code: yes

Shawn Zhang
● permission to post video: yes
● permission to post final report: yes
● permission to post source code: yes

Steven Zhong
● permission to post video: yes
● permission to post final report: yes
● permission to post source code: yes

