

MIE324 Project Report

Music Genre Classification

Robert Adragna

Yuan Hong (Bill) Sun

Word count: 1983

1. Introduction

A music genre classifier is a software program that predicts the genre of a piece
of music in audio format. These devices are used for tasks such as automatically
tagging music for distributors such as Spotify and Billboard and determining appropriate
background music for events.

Currently, genre classification is performed manually by humans applying their

personal understanding of music. This task has not yet been automated by conventional
algorithmic approaches since the distinctions between music genres are relatively
subjective and ill-defined. However, the ambiguity of genre classification makes
machine intelligence well-suited to this task. Given enough audio data, of which large
amounts can be easily harvested from freely available music online, machine learning
can observe and make predictions using these ill-defined patterns.

The goal of this project is to build a proof-of-concept music genre classifier using

a deep learning approach that can correctly predict the genre and confidence level of
Western music from four candidate genres (classical, jazz, rap, rock).

2. Overall Software Structure

2.1. Training, Validation and Test

2

Pipeline Steps:

1. Download labelled audio samples from all genres using the Spotify API
2. Trim samples to 10-seconds each and convert them to Numpy arrays.
3. Normalize each array
4. Convert raw audio arrays into time series of Mel-frequency cepstral coefficients

(more detail in Section 3.2)
5. Split data into training, validation and test sets
6. Execute training loop with periodic evaluations of validation accuracy
7. Save the model with highest validation accuracy
8. Load best validation accuracy model, predict genres of test data and generate

various evaluation metrics (accuracy, precision, recall, confusion matrix).

2.2. User interface

Pipeline Steps

1. User inputs URL to YouTube song into terminal interface and the program
downloads the song.

2. Song trimmed to a 10-second sample and converted to numpy array
3. Audio is normalized and then converted to MFCC
4. The best model is loaded, and then the predicted confidence level of each genre

are computed and displayed (shown below)

3

3. Data

3.1. Sources of data

Our data is comprised of a total of 4640 10-second audio clips of music from four
genres: jazz, classical, rap and rock. There are an equal number of songs of each genre
to ensure a balanced dataset. The data was selected from songs featured on Spotify’s
genre-specific playlists and downloaded using the Spotify API.

3.2. Preprocessing

First, we normalized the audio data for each song to remove differences in the

baseline volume at which different pieces are recorded, which does not affect their
genres.

Raw audio is difficult to work with since it contains too many data points (22,500
per second) to be computationally feasible for most neural networks. It would take too
long to train, and the data’s detail would make pattern recognition difficult without a
prohibitively large model. Thus, we tested two more compact forms of data
representation: Fourier-transform coefficients and Mel-frequency cepstral coefficients
(MFCC).

Performing Fourier transform involves breaking the audio sample into small

segments (~0.1 seconds), and taking a Fast Fourier Transform (FFT) of each segment.
The resulting Fourier coefficients vectors were stacked along the time axis to form a

4

time-series matrix of Fourier coefficients, which can be treated like an “image” when
training. The FFT was performed using a Numpy function [1].

Performing the MFCC transform involves the following steps [2]:

1. Take the Fourier transform of each segment of audio
2. Map the powers of the spectrum obtained above onto the Mel-scale, using

triangular overlapping windows
3. Take the logarithms of the powers at each of the Mel-frequencies
4. Take the discrete cosine-transform of the list of Mel-log powers
5. The MFCCs are the amplitudes of the resulting spectrum

This process was implemented using the Librosa library (a toolset designed for

sound processing) [3]. We tried MFCC because according to [2], it is an industry
standard for audio processing, and the author noted that it leads to significant accuracy
improvements.

4. Machine Learning Models

4.1. 1D CNN

We initially attempted training on normalized audio data using a 1D-CNN with 2

layers and 3 fully-connected linear layers. However, the challenges mentioned in
Section 3.2 were insurmountable. At first, since each audio vector was 200,000
elements long and we theorized that genre-specific ‘features’ of music are at least 0.1
seconds long, we made the kernel sizes very large (>1000) so that they could capture

5

relevant musical features. However, at these sizes our Google Cloud instance would
use up extremely large amounts of memory (> 80 Gb) and take prohibitively long to
train. We attempted using smaller kernel sizes, using fewer kernels, and reducing the
number of layers to make the model computationally feasible. However, all of these
configurations led to underfitting: both test and validation accuracies remained near
equilibrium regardless of training time.

4.2. 2D CNN

We then trained on time-series matrices of Fourier-transformed audio using a
2D-CNN, treating each matrix as an image. Following the advice of several research
papers [4], we hoped that there might be patterns between subsets of Fourier
coefficients across time that could be easily identified. This model contained 2-4
convolutional layers and 3-4 fully-connected linear layers. Three different kernel
configurations were tested:

1. Square kernels of varying sizes
2. Thin rectangular kernels moving only along the direction of the time series

designed to capture features across each segment along the time series
3. Thin rectangular kernels along the direction of audio across time to capture

features along each segment

The first and second configurations resulted in underfitting as the kernels did not
capture any features. Conversely, the third configuration resulted in overfitting as the
training accuracy approached 80% while the validation accuracy decreased to less than
equilibrium (<25%). Implementing overfitting reduction methods such as batch
normalization and dropout did not improve the results.

6

4.3. Multi-layer GRU

In this model, MFCC-transformed data is first passed through a GRU. The GRU
has an embedding dimension of 52, corresponding to the number of MFCC coefficients
per time segment of audio, and a hidden dimension of 100. It is 100 layers deep, to
accommodate 100 time segments included in our input. MFCC coefficients are inputted
to the GRU in chronological order, and the GRU’s output is fed into a single linear layer
with 4 outputs and a softmax activation function. Each linear layer output represents the
probability that our song is one of the four genres of interest. We hoped that the
network’s recurrent structure would allow us to account for the sequential patterns
inherent to music data. We also hoped that the long-term memory of GRUs would allow
the model to glean insight from longer patterns not perceivable by CNNs.

5. Methods and Results

5.1. Training methods

The following hyperparameters were optimized during training:

● All Models:
○ Batch size
○ Learning rate
○ Number of epochs
○ Number of final fully connected layers

● CNN Specific:

○ Kernel size
○ Number of kernels

7

○ Kernel stride

● RNN Specific:
○ Number of hidden layers
○ Hidden dimension size
○ Embedding dimension size

Our training methodology was a hybrid between grid search and personal

intuition. We would independently perform range-constrained grid search on a limited
set of hyperparameters and record the results. We would then frequently meet to
assess current problems with the model and brainstorm on how to correct these issues
and improve its performance. We would then iteratively re-train the model using our new
ranges for hyper-parameters and architecture.

All training took place on GPUs on either our Google Cloud instance or
aUToronto’s (UofT’s self-driving car team’s) development server.

5.2. Training and validation results

For the multi-layer GRU RNN model, the training accuracy approached
approximately 85% and the validation accuracy approached approximately 83% after
200 batches (2 epochs). Since these final accuracies are much greater than random
chance (25%), the model is not underfitting. Moreover, since training and validation
accuracies increase at roughly the same rate and final training accuracy is slightly
higher than final validation accuracy, the model is not overfitting.

8

5.3. Test results

Our test set consisted of audio samples of 160 songs from each of our four
genres of interest (640 total) selected from Spotify. The results are as follows:

9

Overall accuracy: 72.3%

Test set accuracy is approximately 10% lower than validation accuracy, implying
that our model may have overfitted slightly. Alternatively, it could imply that our test data
was flawed. This is plausible since we forgot to create a test set from our originally
collected data, and only did it after training. We selected test set songs that were not
included in our training or validation data, which forced us to collect these songs from
rather obscure Spotify playlists. These playlists may have included songs from esoteric
sub-genres not adequately present in the training / validation data, reducing model
accuracy. Despite this potential flaw, our model still performs very well - over 9% better
than the current academic standard for 4-genre classification of 63.75% [2].

Our model is able to accurately recognize rap and rock music, with recall values
of 93.8% and 80% respectively. However, it is much less adept at recognizing classical
and jazz music, with recall values of respectively 66.9% and 48.8%. Rap, rock and
classical music have roughly similar precision values near 75%, while jazz has a much
lower precision of 56.7%.

These relative differences in performance between genres may be explained by

the qualitative differences in their distinctiveness. Rap and rock music tend to have very
distinctive sounds and vocal stylings, such as autotune and the electric guitar, and thus
are easier for the model to differentiate. Conversely, classical and jazz music are both
typically instrumental and use similar instruments, causing the model to easily confuse
them and thus cause worse performance with both genres. This partially explains our
results; however, since jazz is also often misclassified as rock, there clearly must be
other reasons for genre-specific performance discrepancies.

10

Furthermore, the model is able to recognize the ‘ambiguity’ of a song’s genre
through its level of confidence in its predictions. For instance, the model predicts that
Eminem’s “Killshot”, which has a distinctively hip-hop sound, is rap with a confidence of
91%. Conversely, the model predicts that Linkin Park’s “Numb”, considered a hybrid of
rock and rap, is rock with a confidence of 70% and rap with a confidence of 30%

6. Ethical Issues

One ethical issue resulting from automatic genre classification is that it may be
used to regulate or censor certain types of music. Music from different genres has been
used throughout history as a medium for publicly sharing socio-political-cultural
messages. These messages may go against the interests of those in power. With a
genre classification system, music containing offending messages can be easily
identified and this information can be used to suppress or encourage its popularity and
exposure according to the interests of those in power. This threatens the democratic
right to freedom of expression.

We are also aware of the potential of our automatic classifier to replace jobs in
the music industry which involve music classification (for example, playlist curators at
Spotify). However, given the small number of workers in the music industry, we do not
believe that this technology will meaningfully change employment patterns.

7. Key Learnings and Reflections

● Data is key!
○ We were forced to take the ‘pop’ category out of our classification system

since results were very poor. We did not have enough data to generalize
the genre’s diverse patterns, and many songs Spotify tags as ‘pop’ blend
into other genres (like rap). Better quantity and quality of data from this
genre would have resolved this issue.

● Machine learning = trial-and-error + intuition
○ Sometimes the best way to achieve success is to try something new. This

mindset encouraged us to try using the RNN

11

○ Intuition about new solutions may guide which ones to try. For instance,
we knew that RNNs could easily process sequential data and thus might
work well for song data.

● Sometimes smaller is better
○ Our large CNN models were very ineffective, but smaller RNN models

worked extremely well

References

[1] "Discrete Fourier Transform (numpy.fft) — NumPy v1.15 Manual", Docs.scipy.org,
2018. [Online]. Available:
https://docs.scipy.org/doc/numpy-1.15.0/reference/routines.fft.html. [Accessed: 01- Dec-
2018].

[2] "mlachmish/MusicGenreClassification", GitHub, 2018. [Online]. Available:
https://github.com/mlachmish/MusicGenreClassification. [Accessed: 01- Dec- 2018].

[3] "Core IO and DSP — librosa 0.6.2 documentation", Librosa.github.io, 2018. [Online].
Available: https://librosa.github.io/librosa/core.html. [Accessed: 01- Dec- 2018].

[4] "Machine Learning with Signal Processing Techniques", Ahmet Taspinar, 2018.
[Online]. Available:
http://ataspinar.com/2018/04/04/machine-learning-with-signal-processing-techniques/.
[Accessed: 01- Dec- 2018].

12

https://docs.scipy.org/doc/numpy-1.15.0/reference/routines.fft.html
https://github.com/mlachmish/MusicGenreClassification
https://librosa.github.io/librosa/core.html
http://ataspinar.com/2018/04/04/machine-learning-with-signal-processing-techniques/

