
SparseLang

MIE324 Project Final Report

 prepared by

Qingyang Guo (1003216557)

Yongchao Zhou (1003282592)

University of Toronto, Engineering Science Division, Machine Intelligence

December 2, 2018

Word count: 1999

Goal and Motivation

The Recurrent Neural Network (RNN) [1] is widely used in many state-of-the-art models to
solve a variety of problems. However, RNN models are sometimes hard to deploy due to the
compute and storage requirement as well as the training time it takes. Research [2] has suggested
that sparsity technique can be used to reduce compute and memory requirement of the neural
network by pruning the redundant connections between neurons. Inspired by that, we
hypothesized that the size of RNN models can be reduced by implementing sparse structure, and
we explored our hypothesis in the context of a language modeling task. The goal of this project
is to reduce the number of parameters of the model and hence computation load of training by
employing sparsity in the connectivity of an RNN-based Language Model [3], while maintaining
model’s performance. Moreover, we also aimed to explore how different level of sparsity would
affect the performance of the model.

Source of Data

The dataset we used is Penn Treebank dataset [4], which is a common benchmarking corpus. It
contains 2,499 stories from a three year Wall Street Journal (WSJ) collection of 98,732 stories
for syntactic annotation. The raw datasets were downloaded from Tomas Mikolov's webpage [5]
and were pre-processed through data pipelines. After tonization and indexify, the dataset was
chucked up into batches of examples and was ready to be fed into model. There was not data
labeling required for this project, since the language model tries to predict the most likely word
that will come up next in the sequence given the previous words. The labels were collected by
delaying the input data one time step. An example was shown below:
Inputs : “I” “went” “to” “school” …
Labels: “went” “to” “school” …
We have pre-processed the data using two different methods, one way was to truncate the dataset
into samples with fixed number of tokens, and the other method was to truncate the dataset at the
end of each sentence, so that each sample has different number of tokens.

Overall Software Structure

Figure 1 - Block diagram of the SparseLang’s overall software structure

The overall structures of software consist of five submodules, which are model, dataset, main,
training utils and visualization. The “model” module is the most crucial one, since it contains the
implementation of the sparse LSTM cell as well as the definition of embedding layer and output
layer. During the training, we used model_config.py file to specify the hyperparameters we used
for the training. In terms of the “dataset” module, it contains data pipeline which was used to
preprocess the dataset and make it ready to be fed into model. As for the “main” file, it contains
the training and evaluation loop and logging information during the training. The “training utils”
contains helper functions for training like learning rate warm up and decay scheme. Finally, we
used “visualization” file to understand our training results better, for example, we visualized the
values and the distribution of the weight matrices’ parameters using histogram and heatmap
respectively.

Baseline Model: Standard LSTM Model

Figure 2 - Visual representation of baseline model structure
The standard multi-layer LSTM model was used as the baseline model [6]. The inputs to the
model are batches of indexes. First of all, the inputs are converted to word vectors by a word
embedding layer, which is trained to create meaningful words vectors. Then the word vectors are
treated as the input to the first layer of the LSTM cell whose outputs are then fed into the second
layer of the LSTM cell. The outputs from the second LSTM cell are flattened by a linear layer
and then fed into the softmax classification layer, which computes the probability of every word
in the vocabulary.

After training the baseline model, we visualized the values and the distribution of the parameters
of weight matrices. As Figure 3 shown, a large portion of parameters (around 75%) has weights
less than 0.07. This observation implies sparsity in the weight matrices, suggesting that sparse
implementation is a promising direction to further pursue.

Figure 3 - Visualization of the values and distributions of the parameters of the baseline model.

Furthermore, we have trained the model on the two datasets that were pre-processed differently,
as Figure 4 shown, the training results have no significant difference.

Figure 4 - The plots of the training loss(left) and validation loss(right)

Sparse LSTM Model

Figure 5 - Weight matrices in LSTM cell that are replaced by sparse matrices.

The Sparse LSMT model was developed based on the standard LSTM model. The sparse
structure was implemented by replacing full-size weight matrices that were used to calculate the
gates of the LSTM with sparse weight matrices. More specifically, to replace regular weight
matrices, we first constructed sparse matrices by selecting some random indices from the full
matrix and then initialized the selected parameters by uniform distribution initializer. (Note:
these initialized parameters will be updated during training) These newly created sparse matrices
were represented by a special tensor called SparseTensor, which only stores the non-zero
elements’ indices, values and the shape of the dense matrix. By utilizing SparseTensor, we could
apply sparse matrix multiplication to all the weight matrices instead of normal matrix
multiplication. According to TensorFlow official guide [7], the more sparse the matrix is, the
more the sparse matrix multiplication outperforms regular matrix multiplication.
The reason we chose to use two layers LSTM cells is not only because it’s a standard choice in
language modeling task, but also it’s based on the experiments we have done. We observed that

with the same number of parameters, model with two LSTM layers always outperformed the
model with a signal layer. Meanwhile, two-layer model has similar performance with three-layer
model but it becomes difficult to train the model when more and more layers were stacked up.

Training, Validation and Test Results

In order to explore how would the different level of sparsity (eg. 1%, 0.5%, 0.2%, 0.1%, 0.05%)
affect the performance of the model, we have designed and conducted two controlled
experiments. For the first experiment, we varied the sparsity level by fixing the size of the weight
matrix while changing the number of non-zero parameters. For the second experiment, we fixed
the number of non-zero parameters and changed the size of the weight matrix, therefore varying
the level of sparsity. It is worth mentioning that the hidden size of the LSTM remained the same
throughout the first experiment, whereas for the second experiment, the hidden size increased so
that the weight matrix became more and more sparse.

Figure 6 - The plots of training loss(left) and validation loss(right) of Experiment 1 have shown
that sparse models have better performance than the baseline model

Table 1 - The number of parameters of the baseline model and different sparse models

The training and validation loss plots were shown in Figure 6. From the training loss plot, we
observed no significant difference among sparse models with different sparsity levels and the
baseline model. However, in the validation loss plot, all of the sparse models outperformed the
baseline model. As the table above shown, the baseline model contains 80 million parameters,
and the most sparse model (sparsity = 0.0005) contains only 50 thousand parameters, whereas

the sparse model had achieved better performance. The observation of the most sparse model
outperformed the baseline model was very surprising and it was out of our expectation.

The results of the second experiment were similar to the first experiment but not as impressive,
the train and validation loss plots can be found in the Appendix. All sparse models except the
one with sparsity 0.01 performed better than the baseline model, but there is no obvious
difference among all sparse models with different sparsity.

Although the training results seem to suggest that the sparse LSTM works pretty well, we were
very cautious about making that statement, considering there are still many other factors may
affect the performance of the model.

1) Regularization: Since we didn’t apply any regularization techniques such as dropout, L2
regularization during the training, so it is possible that the baseline model was overfitted
to the training set, resulting in a slightly worse performance in the validation set. But the
sparse model seems to generalize well, so we hypothesized that the sparse structure has
intrinsic regularization effect, but it needs to be further explored.

2) Embedding layer and output layer: Since our experiments focused on the LSTM, we did
not pay much attention to the impact from embedding layer and output layer, maybe
these two layers are so powerful that they capture most of the information needed to
perform well on the language modeling task. In that case, LSTM cell only plays an
insignificant role in the model, so whether it is strong or not does not have a huge impact
on the performance of the model.

3) Dataset and Task: Maybe the dataset is not challenging enough, there is not enough
information to learn, so it is too easy for the sparse model to perform well. Moreover,
maybe the language modeling task is too “suitable” for the sparse model, and a different
task may reveal the deficiency of the sparse model.

4) Initialization: It was observed that the sparse models with different sparsity have pretty
similar performance, and there is no monotone relationship between sparsity and
performance. We hypothesized that this might due to the random initialization of the
weight matrix, resulting in some trials have a better “starting point” than the others.

Ethical Issues

Since in this project we have worked closely with the language models, it is necessary for us to
consider the ethical issues related to its applications. One of the most widely used applications of
language modeling is speech recognition [8],which can be applied in all kinds of scenarios. For
example, speech recognition technology has allowed visually impaired and disabled community
to interact with computers and phones. The technology is also used to assist professional
interpreters during simultaneous interpretation. The list of useful applications of speech
recognition technology can go on and on, however, we should also consider some potential risks
associated with it. Before speech recognition technology was developed, many people were
already concerned about government wiretapping their phone calls. As technology develops,
many smart devices have voice-controlled features, people start to worry about the technology
empowers government to easily surveille general public and some companies might take
advantages of the audio records, creating customer profiles. Many technologies themselves are
neutral, but how we use and develop them is not, so it is very important for machine learning
engineers to be aware of the possible consequences and impact of their work could have on
people and society.

Key Learnings

This project provided a valuable learning experience for both team members. Besides from
learning all about the technical machine learning knowledge, we think the key learning from this
project is how to properly and efficiently convey our ideas to others. For our proposal
presentation, we failed to deliver our idea to the audience in a clear and understandable manner,
it was mainly because we didn’t efficiently link the technical details and the application together,
and we didn’t properly express the goal of our project. As Prof. Rose pointed out, lack of clarity
implies of lack of thinking and understanding. After the presentation, we dug in more and tried to
grasp a deeper understanding of the project. When we were preparing for the progress
presentation, we were we cautiously designed the presentation, hoping it’s more understandable.
During the preparation process, we found that by presenting the project to people who are not
familiar with it and asking them to repeat what the project is about turns out to be a very good
method to verify whether or not the presentation makes sense. Learning how to effectively
convey an idea to others is hard, but we are glad that we are aware of it and are making effort to
improve on it.

Reference

[1] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–211, 1990.
[2] M. Thom, Sparse Activity and Sparse Connectivity in Supervised Learning, 14th ed. Journal
of Machine Learning Research, 2013, pp. 1091-1143 [Online]. Available:
http://www.jmlr.org/papers/volume14/thom13a/thom13a.pdf. [Accessed: 03- Dec- 2018]
[3] T. Mikolov, M. Karafiat, L. Burget, J. Cernock ´ y, and S. Khudanpur, “Recurrent neural
network based language model.” ` in Interspeech, vol. 2, 2010, p. 3
[4] Treebank-3. (n.d.). Retrieved from https://catalog.ldc.upenn.edu/ldc99t42
[5] Fit.vutbr.cz. [Online]. Available:
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz. [Accessed: 03- Dec- 2018]
[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997
[7] "tf.sparse.matmul | TensorFlow", TensorFlow, 2018. [Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/sparse/matmul. [Accessed: 03- Dec- 2018]
[8] A. Graves, A.-R. Mohamed, and G. Hinton, ‘‘Speech recognition with deep recurrent neural
networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2013, pp. 6645–6649

Appendix

Training results of Experiment 2

