
The Edward S. Rogers Sr. Dept of Electrical and Computer Engineering
University of Toronto

Final Report

Title: Automatic Transistor-Level Design and Layout of FPGAs

Project I.D. # 1092001

Prepared by: Mark Bourgeault (bourgea@ecf.toronto.edu)

Joshua Slavkin (slavkin@ecf.toronto.edu)

Chris Sun (suny@ecf.toronto.edu)

Supervisor: Prof. J.S. Rose

Section #: 5

Section
Coordinator:

 R. Gillett

Date: Friday, April 12, 2002

 ii

Executive Summary

Field-Programmable Gate Arrays (FPGAs) are becoming more prevalent in

digital systems and are used to implement a wide range of applications – from

telecommunications switching systems to wireless interfaces. This project investigates

the feasibility of a tool to automate the process of producing the transistor- level layout of

an FPGA. This will reduce the design cycle time while maintaining a comparable quality

to layouts fully optimized by hand. We will extend an existing tool, Automated

Transistor Layout (ATL), by improving its placement algorithm, designing a router, and

developing a Graphical User Interface to visualize the proposed enhancements. This

project takes ATL from cell placements without routing between them and defines the

inter-cell routing and the intra-cell layout. Our work coincides with another project is

further improving the cell placement algorithms.

 iii

Team Members’ Contributions

Table 1 contains a listing of the project milestones that were defined at the

beginning of our project. The table provides a short description of each task, identifies

the primary group member responsible for completing the module, and our initial

estimates for the duration of each milestone.

Task Duration Task Lead
Background Research September 4 – September 30 ALL

Technical Proposal September 20 – September 30 ALL

Routing Infrastructure (Inter-cell) October 1 – December 31 Mark

Graphical Infrastructure October 1 – December 31 Chris

Support For Hand Generated Placement
(Intra-cell)

October 1 – December 31 Josh

Router Algorithm (Inter-cell) January 1 – March 31 Mark

Placer & Router Feedback Loop January 1 – January 31 Josh

Graphical Routing Editor January 1 – March 31 Chris

Auto-Generated Placement (Intra-cell) February 1 – March 31 Josh

Table 1: Original Milestones for Design Project

Over the course of the project’s lifecycle, both the milestones and their durations

were updated based on inaccurate estimates in the amount of effort and for unexpected

difficulties. Table 2 lists the updated milestone schedule and contains information as to

the final status for each of the milestones at the conclusion of the project. We have

completed all of our original milestones, except for a module that automatically generates

the intra-cell layout. The primary reason for abandoning this milestone was that

preliminary estimates for the performance of an automated intra-cell layout engine would

be significantly inferior to a hand-generated solution. Additionally, we have

 iv

underestimated the total time taken to fulfill the non-technical requirements for the design

project (i.e. presentations & reports).

Task Duration Task
Lead

Status

Background Research September 4 – September 30 ALL þ

Technical Proposal September 20 – September 30 ALL þ

Inter-cell Routing Infrastructure (software) October 1 – December 31 Mark þ

Graphical Infrastructure (software) October 1 – December 31 Chris þ

Hand Development of Intra-cell Layouts
(hardware schematics) October 1 – December 31 Josh þ

Interim Reports January 1 – January 10 ALL þ
Placer & Router Feedback Loop (software) January 1 – January 15 Mark þ

Inter-cell Router Algorithm Improvements
(software) January 16 – March 31 Mark þ

Graphical Routing Editor (software) January 1 – March 31 Chris þ

CAD Development of Intra-cell Layout
(hardware schematics & software)

February 1 – March 31 Josh þ

Integration & Test March 1 – April 4 ALL þ
Poster Presentation March 14 – March 21 ALL þ
Oral Presentation March 21 – April 4 ALL þ
Final Tuning of Inter-cell Router
(experimentation)

April 1 – April 12 Mark þ

Final Report April 1 – April 12 ALL þ

Table 2: Final Milestones for Design Project

As shown in the table, most of the technical components were software-oriented.

Chris and Mark exclusively worked on developing software for our CAD tool, while Josh

designed several hardware schematics and wrote a software module to transfer the

schematic representation into the CAD tool’s internal data structures.

 v

The initial partitioning of the final report write-up was based on the technical

components that each individual worked on over the course of the year. The remaining

sections were allocated evenly between the three of us, based on the comments that we

received in our interim reports. Table 3 lists the individual responsible for each section

of the final report write-up:

Report Section Author
Report Outline Mark Bourgeault

Executive Summary Josh Slavkin

Team Members’ Contributions Mark Bourgeault

Introduction Josh Slavkin

Background Work Chris Sun

Intra-cell Layout Josh Slavkin

Inter-cell Routing Mark Bourgeault

Graphical User Interface Chris Sun

Conclusions & Future Work Mark Bourgeault

Final Proofing Josh Slavkin

Table 3: Division of Final Report Write-up Responsibilities

 vi

Table of Contents

EXECUTIVE SUMMARY ... II

TEAM MEMBERS’ CONTRIBUTIONS...III

TABLE OF CONTENTS ...VI

LIST OF FIGURES ...VII

LIST OF EQUATIONS...VIII

LIST OF TABLES ...VIII

1 INTRODUCTION... 1

1.1 FPGA LAYOUT & DESIGN CONSIDERATIONS .. 1
1.2 MOTIVATION.. 3
1.3 APPROACH ... 4
1.4 REPORT ORGANIZATION .. 6
1.5 ACKNOWLEDGEMENTS... 7

2 BACKGROUND WORK ... 8

2.1 FPGA STRUCTURE ... 8
2.2 CAD IN FPGA ... 11

2.2.1 Synthesis.. 12
2.2.2 Placement.. 13
2.2.3 Routing .. 14

2.3 PREVIOUS WORKS .. 15
2.3.1 Architecture Generation ... 15
2.3.2 Netlist Generation... 18
2.3.3 Placement.. 22

3 INTRA-CELL LAYOUT ... 23

3.1 LAYOUT PROCESS .. 24
3.1.1 Schematic Entry .. 24
3.1.2 Manual Layout .. 25
3.1.3 Layout Parser.. 26

3.2 INTER-CELL PLACEMENT.. 28

4 INTER-CELL ROUTING.. 29

4.1 POSITION IN CAD FLOW .. 30
4.2 ROUTING GOALS & CONSTRAINTS... 31
4.3 ROUTING GRID... 33

4.3.1 Design Rule Considerations ... 35
4.3.2 Coordinate Transformation .. 39

 vii

4.3.3 Routing Grid Abstraction.. 45
4.4 ROUTABILITY-DRIVEN ROUTER ... 46

4.4.1 Algorithm Structure .. 46
4.4.2 Routing Representations ... 51
4.4.3 Cost Function.. 54
4.4.4 Speed Enhancements... 57
4.4.5 Performance Enhancements... 62
4.4.6 Validation Module... 69

4.5 PLACER & ROUTER COMMUNICATION LOOP.. 70
4.6 SPECIALIZED NET ROUTING... 71
4.7 ROUTING RESULTS... 73
4.8 SUMMARY.. 78

5 GRAPHICAL USER INTERFACE.. 80

5.1 GUI FUNCTIONALITY... 80
5.1.1 Inter Cell Placement ... 80
5.1.2 Inter Cell Routing.. 80
5.1.3 Intra Cell Placement ... 82

5.2 GRAPHICAL INTERFACE ... 83
5.3 GUI IMPLEMENTATION .. 85

5.3.1 Interface Implementation.. 86
5.3.2 Inter Cell Placement Visualization Implementation 87
5.3.3 Routing Visualization Implementation.. 87
5.3.4 Intra Cell Placement Visualization ... 91

6 CONCLUSIONS AND FUTURE WORK.. 93

6.1 SUMMARY AND CONTRIBUTIONS ... 93
6.2 FUTURE ENHANCEMENTS... 96

7 REFERENCES.. 98

APPENDIX A: CELL SCHEMATIC AND LAYOUT LIBRARY............................ 99

List of Figures
FIGURE 1: FPGA CREATION PROCESS OVERVIEW ... 2
FIGURE 2: PRE-ATL PROCESS FLOW .. 5
FIGURE 3: INTERNAL ATL CONTROL FLOW .. 6
FIGURE 4: HIGH LEVEL VIEW OF FPGA.. 9
FIGURE 5 FPGA CAD FLOW .. 11
FIGURE 6: LOOKUP TABLE SCHEMATIC.. 17
FIGURE 7: OVERALL FLOW OF VPR_LAYOUT... 19
FIGURE 8: PORT ALIGNED FOR TILEABILITY [2] .. 21
FIGURE 9: SCHEMATIC OF AN SRAM CELL .. 24
FIGURE 10: LAYOUT OF SRAM CELL ... 26
FIGURE 11: ROUTER POSITION IN ATL CAD FLOW ... 30
FIGURE 12: RELATIONSHIP BETWEEN ROUTING GRID NODES AND THE METAL AREA 38

 viii

FIGURE 13: UNDERLYING METAL REPRESENTATION FOR ROUTING GRID NODES 39
FIGURE 14: CLASSIFICATION OF BLO CK COORDINATES FOR THE PIN PLACEMENT ALGORITHM

... 43
FIGURE 15: PIN POSITIONS USED TO RESOLVE CONTENTIONS ON THE PLACER COORDINATE

SYSTEM .. 44
FIGURE 16: PSEUDO-CODE OF THE ROUTABILITY-DRIVEN ROUTING ALGORITHM 50
FIGURE 17: REPRESENTATION OF THE TRACEBACK DATA STRUCTURE.............................. 52
FIGURE 18: COMPARISON OF ROUTING TREE AND TRACEBACK REPRESENTATIONS 54
FIGURE 19: ROUTING GRID NODES CONSIDERED BY BEAM ROUTING APPROACH 61
FIGURE 20: COSTS ASSIGNED IN WAVE EXPANSION ALGORITHM...................................... 64
FIGURE 21: COSTS ASSIGNED IN WAVE EXPANSION ALGORITHM WITH ROUTING FLOW

BIAS FACTOR ... 66
FIGURE 22: NAIVE ROUTING OF 3-PIN NET .. 67
FIGURE 23: ROUTING OF 3-PIN NET WITH EXPLICIT SINK ORDERING................................. 68
FIGURE 24: TRADITIONAL POWER/GROUND RAIL LAYOUT ... 72
FIGURE 25: INTER-CELL ROUTING SHOWING SELECTED NETS ... 81
FIGURE 26: THE OLD ATL INTERFACE VS. NEW OPENGL ATL.. 84
FIGURE 27: INITIAL PLACEMENT VIEWS (OLD VS. NEW) FOR “TILE_1X4” CIRCUIT.............. 86
FIGURE 28: ROUTING GRID FLAGS .. 87
FIGURE 29: DRAWING PROCEDURE BASED ON TRACEBACK. ... 90
FIGURE 30: INTER-CELL ROUTING WITH TRANSISTOR LEVEL LAYOUT DISPLAYED 92
FIGURE 31: INTER-CELL ROUTING WITH TRANSISTOR LEVEL LAYOUT HIDDEN 92

List of Equations
EQUATION 1: PRESENT CONGESTION COST FOR ROUTING GRID NODES 55
EQUATION 2: HISTORICAL CONGESTION COST FOR ROUTING GRID NODES 56
EQUATION 3: EXPANSION COSTS FOR ROUTING GRID NODES .. 57
EQUATION 4: EXPANSION COSTS FOR ROUTING GRID NODES WITH BIAS FACTOR

CONSIDERATIONS... 65

List of Tables
TABLE 1: ORIGINAL MILESTONES FOR DESIGN PROJECT .. III
TABLE 2: FINAL MILESTONES FOR DESIGN PROJECT ... IV
TABLE 3: DIVISION OF FINAL REPORT WRITE-UP RESPONSIBILITIES V
TABLE 4: PHYSICAL INFORMATION ON BENCHMARK CIRCUITS ... 75
TABLE 5: CPU TIME REQUIRED BY THE ROUTER .. 76
TABLE 6: EXPERIMENTAL ROUTING RESULTS FOR BENCHMARK CIRCUITS 77
TABLE 7: POSITION OF METAL SEGMENTS IN A ROUTING GRID NODE.................................. 88
TABLE 8: CELL SCHEMATICS AND LAYOUTS... 100

 1

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are becoming more prevalent in

digital systems and have a wide range of applications, ranging from telecommunications

switching systems to wireless interfaces. Current ly, the transistor-level design and layout

of an FPGA is a manual process, with the assistance of Computer Sided Design (CAD)

tools, and takes many person-years of effort. This project enhances an existing tool that

automates the process of producing the transistor- level design of an FPGA in order to

reduce the design cycle time for an FPGA layout to days instead of several months.

One key question our team attempts to answer is how well an automated solution

will compare to standard industry results produced by a team of designers. Specifically,

we compare the area needed to implement the design in silicon. If our tool produces

reasonable results, then it could be used to assist FPGA architects in refining the

underlying architecture of FPGAs to produce future devices more rapidly.

Therefore, the main goal of our project is to reduce the length of design time for

the development of FPGA layouts while maintaining the quality of results of achieved by

current FPGA architects.

1.1 FPGA Layout & Design Considerations

An FPGA is an integrated circuit that allows routing paths to be reconfigured after

fabrication. Like any integrated circuit, for an FPGA to be created the complete

 2

transistor-level structure and interconnections must be defined; this is the design phase of

creating an FPGA. The main consideration at this stage is the functional correctness of

the circuit or sub-circuits. Additional considerations include estimating the transistor

sizes to provide some speed and timing optimizations. Once the design is complete, the

circuit must be physically laid out so a mask can be created to fabricate the actual silicon

implementation of the FPGA. Figure 1 shows the high- level view of the FPGA creation

process.

Transistor-
level

Design of
FPGA

Layout
of FPGA

Functional
Description

of FPGA

Fabrication
of FPGA

Final FPGA

Figure 1: FPGA creation process overview

Determining the exact locations of the silicon representation of each transistor and

piece of metal interconnect is the layout phase of creating an FPGA. The main

consideration at this stage of development is producing a layout that functionally matches

the design. Additionally, the layout created should produce good yields from fabrication.

Design rules specify the geometric properties the layout should have to maximize the

yield for an integrated circuit from a given fabrication process. Thus, conforming to the

design rules specified for a fabrication process is essential to produce sufficient quantities

of the FPGA to make the expense of fabrication worthwhile.

Matching the functionality of the design and meeting the design rules are not the

only considerations at this stage. Additional considerations include minimizing area and

maximizing timing performance. Because these two considerations can be at odds with

 3

each other, a balance between the two must be reached. However, as long as minimum

timing requirements are met, area considerations usually take precedence..

Our project deals primarily with the layout portion of the FPGA creation process.

The main considerations while attempting to first minimize the area required to layout an

FPGA and then optimize the timing performance.

1.2 Motivation

FPGAs are increasingly important components in the design of digital systems.

But before any digital system can be implemented upon an FPGA, the layout and design

of the FPGA must be defined at the transistor- level. The process of FPGA design and

layout is a task that currently requires several person-years worth of work. Existing tools

can assist in this process; VPR_LAYOUT converts architecture description files into cell-

level and transistor- level netlists for FPGA tile and the previous generation of ATL

addresses the initial placement of the cells. However, the process is still largely manual.

This generation of ATL further automates the layout and design process. The three main

benefits our tool attempts to provide to FPGA designers are:

• Reduction in design cycle time

• Architecture exploration experiments

• Preliminary quality assessments of architectures

 4

1.3 Approach

Our group defined three main tasks to perform in the attempt to achieve our main

goal. They are:

• The creation of an inter-cell routing algorithm that selects the width, layer,

and position of each metal component that is required to implement a portion

of an FPGA on an integrated circuit.

• The definition of a compact layout for each type of cell that appears on an

FPGA. A “cell” is a group of transistors that performs a specific digital logic

function.

• The development of a graphical user interface that can visualize the efforts of

the two previous tasks and accept user input to modify the final layout

selected by the routing engine.

Our design project is an extension of ATL [2], a tool that performs the Automated

Transistor Layout for a representation of an FPGA segment, hereafter referred to as an

FPGA “tile”. This software application contains the foundation for achieving the goal of

automating the development of FPGA layouts. The previous version of ATL takes the

required connectivity of the FPGA tile and then positions the cells such that the

anticipated number of wires required to electrically connect the various terminals of the

FPGA’s transistors is minimized. As already mentioned, our design project will augment

ATL with an “intra-cell layout mechanism” and an “inter-cell routing module”. These

modules will transform ATL into a tool that is closer to creating a viable electrical

representation of the FPGA tile so that the output of ATL can be used to produce a

 5

functionally correct integrated circuit that represents the architectural description of the

tile. Figure 2contains a pictorial summary of the process tasks that must occur prior to

ATL’s execution. These steps include the definition of the architecture and creation of

the netlist for the FPGA tile and the layouts for each cell. Within the figure, the

rectangles represent a process or task to be performed and trapezoids represent the

resulting data. Processes that are not greyed out are those we implemented. The

computer/person icon reflects the level of computerized tools associated with the process.

Figure 2: Pre-ATL process flow

Figure 3 is a block diagram of the data flow within ATL. In this figure, rectangles

represent functional modules with ATL; those not greyed out are modules our group

implemented. The trapezoids represent the input and output data files.

 6

Figure 3: Internal ATL control flow

1.4 Report Organization

The next section of this report provides some background information on the basics

of FPGA architecture, the basic Computer Aided Design flow for VLSI designs and an

overview of the previous work necessary for this project to be successful.

Sections 3 through 5 provide details about the overall methodology used within the

ATL flow. Section 3 outlines the rationale and methodology used in the intra-cell layout

process that takes place outside of ATL. Section 4 presents the details of the inter-cell

routing to connect the cells. Section 5 provides details on the Graphical User Interface

that was created to assist in the use of ATL

 7

Section 6 reports on the conclusions drawn from this work and presents some

potential future work that may extend this project. The final section summarizes the

work done in this project and draws conclusion this work can provide.

Appendix A contains the schematic and layout library of the cells used in the

FPGA architectures considered.

1.5 Acknowledgements

The authors are indebted to Jonathan Rose, our project supervisor, whose

guidance and unlimited enthusiasm for this work has been most helpful and inspiring.

We would also like to thank several members in the FPGA community – Vaughn Betz,

David Lewis, Jordan Swartz, and David Galloway – for the many valuable suggestions

and insightful discussions they have provided over the scope of this project. Special

thanks are due to Vaughn Betz who supplied considerable direction in the design of the

routing algorithm.

Ketan Padalia, the pioneer of the ATL application, deserves special credit for his

helpfulness and the time he spent in the explanation of several subtle issues involving the

ATL code base. Finally, we appreciate the work of our colleague, Ryan Fung, who has

been working concurrently on refining the inter-cell placement algorithm and for

engaging in continual debates to improve the quality of this project.

 8

2 Background Work

2.1 FPGA structure

The structure of an FPGA can be viewed from 2 perspectives, the user-design view

and the Integrated Circuit (IC) design view. The IC design view looks at the chip at the

transistor level while the user-design view is a higher- level, abstraction of the chip. In

both cases, common terminology is used. For this document, some terminology is now

presented.

Term Definition/Use

Point Transistor port, cell port or wire connection. Can be abstracted

from the cell level to the transistor level.

Netlist

Connection

Two points within a design which are electrically connected for

the design to operate

Net Set of netlist connections with a shared point (source)

Netlist A list of nets that define the connectivity of a design

Interconnect Metal connecting 2 points

In the user-design view of an FPGA, the overall structure is primarily divided into

Logic Blocks and Routing. A logic block consists of a number of Look-Up Tables

(LUT), usually 8-10. Each LUT implements a 3-4 input logic function. The overall

structure is like a map, where the Logic Array Blocks (LABs) are like cities, the LUTs

 9

are like buildings within the cities and the routing is like the highways connecting them.

When the correct connections between the LUTs are made, the chip can implement

virtually any function. Setting certain switches program the connections, such that the

connections between the LUTs exist. Unlike determining the directions on a map, the

path between two points cannot share the same interconnect.

Cores, or specialized function blocks, can be inserted into an FPGA to provide

additional functionality. Some of these functions may include, Digital Signal Processing

(DSP), memory, processor cores, Phase-Locked Loops (PLLs) or Clock-Data Recovery

(CDR) circuits. Figure 4 depicts the high level view of an FPGA.

Figure 4: High level view of FPGA

At the user-design level, the positions of the blocks and routing are fixed. During

Integrated Circuit (IC) design, each block location is undetermined and the routing paths

 10

are not defined. The main task of IC design is to determine the optimal positions of the

blocks and to connect them with routing. In addition to fixing the location of each block

and the routing between them, the details of each block must also be developed. Once

basic architecture parameters are defined (e.g. the number of LUTs to a LAB, the number

of inputs to a LUT, the number of horizontal and vertical wires, the connectivity patterns,

etc.), the optimization of placement is an arduous task requiring significant effort by

many engineers. Most of this work is done manually using Computer Aided Design

(CAD) tools. Any change in the architecture parameters requires a complete reworking

of the entire design, thus making experimentation with different architectures expensive

in terms of resources.

Since the task of laying out a complete FGPA is a very large problem, tools, like

Versatile Place and Route (VPR) and VPR-LAYOUT, allow architectural engineers to

specify a sub-section of the FPGA, a FPGA tile, which are building blocks of the overall

chip design. Once basic tiles have been defined, VPR replicates them appropriately to

achieve the desired FPGA. This project focuses on automating the layout within each

tile.

Automated Transistor Layout (ATL) is the first step in automating the tile layout

process. ATL places the components, or cells, within each tile. Our project will define

the transistor level layout within each cell and provide the routing between them.

 11

2.2 CAD in FPGA

Implementing a circuit in an FPGA is highly complex due to the shear number of

circuit elements involved. CAD tools exist to assist designers in this task. An FPGA

user will typically provide a high- level circuit specification using a hardware description

language (HDL) or schematic entry. Then CAD programs will convert this abstraction of

the circuit into a detailed programming file that dictates the circuit map in the FPGA.

This procedure is normally divided into three sequential sub-processes (synthesis,

placement and routing) to keep the complexity tractable as shown in Figure 5. VPR is a

CAD tool that implements placement and routing for FPGAs. It provides the transition

of data flow from high- level architecture description files, in order to generate the

necessary detailed programming file on which ATL operates. This section provides a

description for each sub-processes and how VPR tackles each process.

Syn thes i s t o l og i c b locks

H igh Leve l A rch i t ec tu re Desc r i p t i on

P l a c e l o g i c b l o c k s i n F P G A

R o u t e c o n n e c t i o n s b e t w e e n l o g i c b l o c k s

F P G A p r o g r a m m i n g f i l e

Figure 5 FPGA CAD flow

 12

2.2.1 Synthesis

Synthesis is the automatic conversion of a hardware description language model

into a netlist of logic blocks, governed by a set of design criteria, such as area and speed.

Synthesis first converts logic- level HDL into basic gates, and then undergoes the logic

synthesis process. Logic synthesis involves performing logic optimization to reduce area

and/or delay, mapping the optimized netlist of basic gates to look-up tables (LUT) and

packing the LUTs into logic blocks.

The first two stages of the logic synthesis have been extensively studied. Good

algorithms and tools are publicly available. The problem raised in the last stage, Logic

Block Packing, is a form of clustering. Clustering and partitioning are inherently the

same problem; both divide a netlist into smaller pieces. While partitioning is the process

of dividing a circuit into only a few pieces at a time, clustering breaks the circuit down

into many small pieces in one step, as opposed to recursively partitioning into a few

partitions in each step. Partitioning is also known as a top-down approach and clustering

as a bottom-up approach. Clustering has been studied at length. However, many

methods are not capable of constraining simultaneously on the maximum number of

inputs, the number of clocks and the number of LUTs and registers in a logic block,

which are key in logic block packing.

VPR claims to be the first publication work that describes algorithms targeting at

“cluster-based” logic blocks. Two packing approaches are presented: a basic algorithm

named VPack and a timing-driven algorithm named T-VPack. The complexity of VPack

 13

is O(kmax*K*n), where kmax is the maximum number of terminals on a net, K is the

number of inputs to each LUT and n is the number of LUT’s plus the number of registers

in the circuit. The author also claims that T-VPack outperforms VPack in terms of both

circuit speed and routing area required.

2.2.2 Placement

Placement is the task of placing modules adjacent to each other to minimize area

or cycle time. Two main algorithms that have been developed are min-cut (partitioning-

based) and simulated annealing. The Min-cut algorithm is a recursive procedure that

partitions the group of blocks to be placed into two subgroups with the minimum number

of signal interconnections, until the leaf cells are reached. In simulated annealing, the

movement of modules is likened to thermal annealing. Modules are initially placed

randomly, and the “temperature” of the layout is estimated according to measurements

such as area and timing. As the layout “cools”, the overall rating of the layout improves.

For each proposed movement, the rating is calculated. A proposed movement can

proceed only if the resulted rating is improved.

VPR incorporates the simulated annealing algorithm for the placement, because it

is much easier to add new optimization goals or constraints to a placer based on such an

algorithm. The algorithm incorporates three enhancements over conventional placement

algorithms that use simulated-annealing approach: a new annealing schedule that is

adaptive to the current layout, a linear congestion cost function that provides better

 14

results that all other alternatives in a reasonable computation time, and an incremental net

bounding box update method that reduces placement CPU time by a factor of over 5.

2.2.3 Routing

After each logic block in a circuit has been assigned a location, a router is needed

to determine how to connect all the logic block input and output pins required by the

circuit. Routing a connection corresponds to finding a path between the logic blocks.

The path is preferred to be as short as possible to comply with the limited number of

wires in a FPGA. A route for a net should not take up resources that another net needs.

Modern routers study net interactions and perform routing in parallel. The overall

procedure divides the routing area into smaller pieces and uses a global router to assign

each net to a few routing areas. A detailed router will then proceed to place the actual

wires.

VPR performs either global routing or combined global-detail routing for FPGAs

and incorporates a routability-driven and a timing-driven router. The timing-driven

router also uses routability as a consideration. While many path finding algorithms are

available, both routers were developed based on a Pathfinder negotiated congestion

algorithm. The Pathfinder algorithm produces excellent results due to two innovations:

allowing overuse of routing resources, and allowing congestion to gradually be resolved

and timing to be directly optimized.

 15

The routability-driven router outperforms all other routers in terms of routing

circuits with a minimum amount of routing. However, the routers cannot be compared on

the basis of timing due to lack of standard benchmarks in this area.

2.3 Previous works

VPR has become quite renowned in industry and widely referenced in many papers

relating to FPGA research. This acclaim is due to relative performance of the algorithms

presented compared to the performance of similar software packages. Our project is part

of an on-going research project at the University of Toronto. We extend an existing CAD

placement tool, ATL, which has its basis in VPR.

2.3.1 Architecture Generation

The versatility of VPR lies in its ability to place and route almost any FPGA

architecture. This is possible because VPR does not make any inherent assumptions

about the FPGA architecture and instead provides a mechanism for users of VPR to

specify FPGA architectures. Because of the complexity of the architecture of an FPGA, a

language for expressing different architectures to the software is defined. This standard

language is able to capture the most essential design features of a vast class of FPGA

architectures. The thesis notes that by enforcing certain architectural constraints, an

architect only needs to define a subset of an FPGA – an FPGA “tile” – to specify

variations. By taking advantage of the ability to create an FPGA from a small set of tiles,

VPR produces a flexible and efficient connectivity structure for FPGA architectures.

 16

Using VPR’s infrastructure and the succinct architecture representation format, it is

possible to design and evaluate a wide selection of viable FPGA devices. The term

viable implies that the device is capable of implementing real-world designs.

The specification provided in the architecture file also contains pertinent

information about the fundamental electrical parameters that characterize the wires and

switches inside an FPGA. VPR uses this information to compute area and delay

estimates of the FPGA if it were manufactured by a semiconductor fabrication facility.

The software then uses the delay estimates and tile connectivity structures to generate an

internal representation of the entire FPGA. This data structure, known as the routing

resource graph (RR graph), is a weighted, directed graph that correlates to the input

architectural description.

The RR graph implicitly contains the transistor- level structure of the FPGA. For

example, nodes in the graph classified as “logic cell sources” can represent the look-up

table structure outlined in Figure 6.

 17

Figure 6: Lookup Table Schematic

As illustrated in Figure 6, the logic cell source not only represents transistors, but

additional logical transistor groupings such as static RAM cells, buffers, and

multiplexers. VPR supports architectural parameters that affect the transistor- level

structure of the lookup-table, allowing users to vary the physical implementation of an

FPGA’s fundamental digital logic components by changing a small number of

parameters. Other parameters supported by VPR can vary the number of routing wires in

a channel and the amount of connectivity between the transistors and the routing fabric.

To evaluate the performance of a given architecture, the CAD tools in VPR use

approximate area and delay information for an anticipated physical layout of the FPGA.

 18

These estimates are based on abstract models that characterize an FPGA’s electrical

components. Under ideal conditions, one would produce a complete layout for each

FPGA architecture of interest to obtain precise area measurements and accurate delay

values [4]. This statement represents one of the primary goals for our project.

2.3.2 Netlist Generation

VPR_LAYOUT is a software program that is used by VPR to generate two

equivalent representations of an FPGA tile using an architectural description as input.

VPR_LAYOUT creates these representations by extracting the transistor- level

information embedded in VPR’s routing resource graph into two different file formats.

The overall flow of VPR_LAYOUT is depicted in the figure below. As depicted,

VPR_LAYOUT is a direct extension to VPR.

 19

Figure 7: Overall Flow of VPR_LAYOUT

One file VPR _LAYOUT produces is the transistor-level netlist. This netlist

captures the structure of all transistors that form a single FPGA tile. An FPGA, like any

other VLSI system, can be decomposed into many interconnected digital logic elements

such as static RAM (SRAM), lookup tables (LUT), and multiplexers (MUX). Each

digital logic component can be created by a set of transistors. Combining these details,

we state that the transistor- level netlist contains the most fundamental information about

the functionality of an FPGA tile. It is the structural relationship of the transistors that

defines the behaviour of an FPGA or any other digital device. The transistor-level netlist

is needed by one module in our project, intra-cell layout, to generate the compact layout

for each cell.

 20

In an FPGA, connections between transistors are not limited to a single tileable

region. VPR_LAYOUT represents connections at the tile boundary by an abstract entity

called a “port”. Therefore, in the context of VPR_LAYOUT, an FPGA tile consists of a

set of transistors and ports that have a specific connectivity pattern. In addition to the

connectivity information between transistors and ports, the transistor- level netlist

contains tileability constraint data for the ports. The concept that an FPGA can be built

using a small number of “tiles” replicated in a grid- like fashion implies that there are

restrictions in positioning ports on the sides of a tile. These constraints are enforced by

VPR’s architectural generator and inferred from its routing resource graph. The netlist

contains restrictions for a port’s side and constraints that enforce two ports to be

positioned directly opposite each other on the tile’s perimeter. Figure 8 shows an

example where two ports have fixed sides and a coupling constraint between them.

 21

Figure 8: Port aligned for tileability [2]

The second equivalent representation that VPR_LAYOUT produces of an FPGA

tile is the cell level netlist. This type of netlist groups all of the transistors into logical

“block types” that directly correspond to the types of digital logic elements used to

construct an FPGA tile. Each instance of a digital logic element is known as a “cell”.

The abstract concept of a cell is useful for dividing the problem of producing a high

quality electrical layout into two sub-problems.

The first sub-problem is the creation of an effective layout of the transistors

within a cell. The second sub-problem is the implementation of an algorithm that

produces a layout of the cells within an FPGA tile and defines legal routing connections

between them. This was the motivation of the automated CAD layout tool, ATL, which

is the basis of our project. Our project interprets the cell level netlist for requirement

parameters needed for the next stage, routing.

 22

2.3.3 Placement

The CAD tool created in [2] performs the automatic layout placement of the netlists

generated by VPR_LAYOUT. This tool, ATL (Automatic Tile Layout), uses the

information in the netlists to estimate the physical size of the tile and produce an initial

solution to the placement problem. A simulated annealing algorithm, based on the

implementation in [4], is the core of the placement engine for ATL. One of the most

important factors in simulated annealing algorithms is the cost function; this function is

used to score the benefits of each placement and to decide whether a proposed

arrangement is accepted or rejected. The cost function used by ATL tries to minimize the

estimated total wire length required to make the connections specified in the cell level

netlist.

Our project is an extension on ATL to provide an automated CAD tool for the

complete tile layout process. ATL provides the crucial cell layout information required

by the inter-cell router. Figure 2 (page 5) and Figure 3 (page 6) show the modified ATL

design flow.

 23

3 Intra-cell Layout

The intra-cell layout process takes the cell descriptions used in the Architecture

Description and defines the locations of the transistors and routing required to implement

each cell. Although an FPGA tile may have many hundreds of cells, there are only a

handful of distinct cell types. Within the architectures investigated for the FPGA tile

there are five main types of cells. They are:

• SRAM

• Look-up Table

• Buffer

• Multiplexer

• Flip-flop

These cells, when interconnected in the cell- level netlist, fully defining the functionality

of the FPGA tile. This section of this report will provide a sample schematic and layout

for the SRAM cell. The complete cell library of schematics and layout is found in

Appendix A..

The original version of ATL already operated on cell- level netlists, with estimated

sizes and port locations, to find good placements. Defining the actual layout of the cells

prior to the inter-cell placement should yield better placements and lead to a better routed

tile.

 24

3.1 Layout Process

The overall intra-cell layout process involves defining a schematic for each cell type

at the transistor level, verifying the functionality of the cell, defining a compact layout

while conforming to design rules. The final layouts are read into ATL to update the cell-

level netlists used in the inter-cell placer to improve upon the previous estimates.

3.1.1 Schematic Entry

In order to guarantee that the final layout for a given cell will provide the intended

functionality, a digital representation of the cell needs to be created. Creating a

transistor-level representation of the cell and simulating its performance confirms that the

representation implements the intended functionality of the cell. Any tool that creates a

netlist suitable for gate- level simulation is appropriate at this stage. Using SUE provides

this functionality. In addition, SUE is integrated tightly with MAX, a layout CAD tool,

and can provide verification that the layout matches the functionality of the schematic.

Figure 9 is the schematic representation of the SRAM cell.

Figure 9: Schematic of an SRAM cell

Once the necessary cells have been created and verified, the actual layout process

can begin.

 25

3.1.2 Manual Layout

Performing manual layouts of the cells allows the FPGA architect to bring their

experience to the design process and optimize each cell for both area and speed. Because

each cell is independent, every cell can be optimized without worrying about affecting

neighboring cells. During the manual layout process, certain constraints must be met.

First, the cell must provide the desired functionality. Second, the layout must use no

more than two layers of metal. This constraint allows 2 layers of metal within the cells, 4

layers of metal dedicated to the routing between the cells and 2 additional layers reserved

for power, ground and clock nets. Third, the layout must meet the design rules for the

process within the cell. Finally, the cells must allow abutment of cells without causing

design rule violations.

Using the third party utility MAX, the custom layouts for each of the cell type

was created. By using this CAD tools and the previously created schematics, the layout

can be matched to the previously verified circuit representation of the cell. In addition,

this CAD tool, like many others, provides design-rule checking thus increasing the

possibility of a high fabrication yield. Figure 10 is the pictorial representation of the

SRAM cell with MAX. This layout has no design rule errors and fully implements the

functionality of the SRAM cell. Further work on this cell can further optimize the layout

area required to realize the cell.

 26

Figure 10: Layout of SRAM cell

The layout for any cell can be extracted into a SPICE netlist and simulations can

be performed upon this netlist to ensure the timing characteristics of the cell are inline

line with the timing requirements. This information could, in future extensions of this

project, be used to make timing estimates of the tile.

Performing manual layout within a project that is designed to automate the layout

and design process might seem to negate the benefits of automation. However, the

limited number of distinct cell types within a tile means the number of manual tasks is

small.

3.1.3 Layout Parser

The final layouts for each cell produced through manual layout must be imported

into ATL. The layout parser acts as the entry point into ATL. Each cell layout is

 27

translated into the internal intra-cell layout structure, l_cells. The implementation of the

intra-cell layout structure in ATL is a simple data structure that uses straightforward

linked- lists of structures in C. The main data structure, l_cell, contains cell identifier, the

dimensions of the cell, a list of ports with locations relative to the lower left corner of the

cell, and the internal structure of the cell. The data structures for the ports, l_port, and

the internal structure of the cell, l_intNode are separate C structures within the l_cell.

The graphical interface requires all the information contained within the l_cell to

accurately draw the internal representations of the cell. The inter-cell placer and router

require only the cell size and port locations as both treat the cells as black boxes.

To allow for easy expansion of cell types, there is a two- level file structure. The first

level file is a cell list file. This file contains the filenames of each individual cell layout

files to be included, the second level file. In the original implementation, the second tier

of files were completely hand generate representations of the cell. In the final

implementation of the layout parser, these files are the MAX layout files. Although the

support still exists for the hand-generated layout files, the verification and validation of

the cells created this way is not guaranteed in the process flow.

The layout parser provides more than simply reading a data file. The units of

measure in MAX files are specified in microns and use specific technology processes.

For example, layouts can be created in 0.25µm or 0.18µm process design rules. ATL

expects layouts to be created under scalable CMOS design rules. The basic unit of

measure in ATL is λ-based; a conversion between the two scales must be performed.

 28

The final function of the layout parser is to convert the original cell- level netlist

representation of the FPGA tile into one that replaces the estimated cell areas and port

positions with those determined through the layout process. Since the inter-cell placer

treats the cell as a simple block with dimensions and port locations, the newly sized cells

can be interchanged with the original without affecting the placement algorithms. This

also means that a mixture of estimated and actual cell information can be used during the

development phase.

3.2 Inter-cell Placement

Inter-cell placement module determines the locations of each instance of the cells

within the tile. ATL’s placement routine uses the cell- level netlist representation of the

FPGA tile to determine the cell types and connectivity within the cell. Cell dimensions

and port locations are determined by the Intra-cell layout process and provided via the

Layout Parser. A simulated annealing algorithm gradually improves cell placement while

minimizes the expected wire lengths and wire congestion. The end result of the Inter-cell

Placer is a placed cell- level netlist. The placed cell netlist defines not only the

connectivity of the cells within the tile but also the orientation and position of each cell

within the tile. The placed cell- level netlist is the starting point for the Inter-Cell Router,

which has only to add the metal connecting the ports of the cells.

 29

4 Inter-cell Routing

Ultimately, a VLSI layout is physically unrealizable unless an electrically legal

path exists for each logical connection specified in the circuit netlist. The purpose of the

router is to define the dimensions, position, and orientation of many metal segments that

collectively connect up the logic design, while meeting the constraints imposed by the

process design rules.

This section will describe how the inter-cell routing module of ATL works. The

“inter-cell” qualifier indicates that this module only considers connections that involve

different cells. The intra-cell layout module is responsible for defining the connections

that are localized within a single cell. We begin by describing the goals and constraints

placed on the routing algorithm and the high- level design decisions that were made at the

onset of the project that balance these considerations. We then explain how the silicon

area available for inter-cell routing is internally represented and why the representation is

both valid and well suited to software routing algorithms that we created. Next, we

describe the implementation details of a routability-driven router that was developed to

solve the inter-cell routing problem. Finally, we present qualitative and quantitative

evidence that the router successfully generates a high-quality, electrically legal routing

for all the circuits available in our test suite.

 30

4.1 Position in CAD Flow

Figure 11 illustrates where the ATL router fits into the CAD flow. The router’s

input is a netlist that describes the position of each cell within the FPGA tile and the

position of each port on the perimeter. This information comes from the output of the

ATL placer and will be referred to as the “netlist placement”. The netlist placement is

either read in from an output file or is generated by invoking the ATL placer. The ATL

router is invoked once this information is obtained. Once complete, the router produces a

compact output file of all the metal segments required to route the circuit and a collection

of routing statistics about the solution is has generated. Examples of these statistics

include the total length of wire used in the routing attempt, the distribution of wire usage

over the routing area, and any connections that the router could not successfully route.

By creating a “feedback” loop between the placement and routing modules, this

information can be utilized by the placer to improve the overall quality of the layout and

the success rate of subsequent routing attempts in the event of an initial routing failure.

Figure 11: Router Position in ATL CAD Flow

 31

4.2 Routing Goals & Constraints

Although electrical legality is the only direct constraint imposed on the router’s

operation, the definition of a high-quality routing algorithm is based on a combination of

the routed circuit’s performance, the success rate (i.e. routability) that the algorithm has

in generating a legal routing, and the computational resources required by the routing

algorithm. A balance of these factors is necessary to produce a tool that is useful in the

FPGA design process in both academia and industry.

The most prominently used measurement for qualifying synchronous circuit

performance is the maximum delay between any two registers in the logic design. The

inverse of this delay represents the maximum frequency for the clock (denoted Fmax) at

which the circuit can operate successfully. However, our project focuses on generating a

routing for an FPGA tile, which is a platform for other digital logic designs. Therefore,

the true goal is to produce a layout that enables the FPGA to be able to implement other

logic designs with the highest Fmax. This implies that equalizing the delays on all the

paths will not necessarily to the best performance for the FPGA. Although there are a

substantial number of factors that need to be considered for the evaluation of the FPGA’s

performance, the standard method is to generate a delay profile for several representative

paths of the FPGA tile. Some paths of interest, based on FPGA CAD tool research are

listed below.

• The delay between the LUT inputs and the logic element flip-flops.

• The delay between the output of a logic element and the input of another logic

element in the same tile.

 32

• The delay between the output of a logic element and the edge of the tile for each

of the wire types available (e.g. short vertical, short horizontal, long vertical, long

horizontal).

• The delay to traverse the entire width/height of the tile.

Based on the high- level architecture, the FPGA designer needs to give guidance

to the CAD tool about the relative importance for each of the representative paths of the

FPGA tile. VPR & VPR_LAYOUT, the software tools that transform the high- level

architecture description into the circuit netlist that ATL uses, currently do not support the

specification of timing constraints. These applications need to be modified in order to

propagate the FPGA designers’ timing requirements to the routing module. In the

absence of this specific timing information, the ATL router attempts to equalize the delay

on all paths. However, the router is designed such that timing information could be

incorporated with minimal modifications to the core algorithmic structure. In order to

effectively and efficiently monitor the routing quality with respect to timing, a fast and

accurate net delay extractor and a path-based timing analyzer need to be developed. The

details of this process are well known and thoroughly discussed in [1].

The effort spent by the router to create a routing that minimizes the delay for the

majority of connections is wasted if the solution is not electrically legal. A potential

layout is worthless if there is even one connection that does not have a legal path.

Although the inability to route a single path does not appear to have significant

ramifications, the routing task is sufficiently complex and massive to preclude “hybrid”

 33

solutions involving a software routing algorithm that produces a layout that is almost

legal and a cleanup phase performed by hand. Therefore, the most important goal for the

routing engine is to generate solutions where 100% of the connections are legally routed

– even at the expense of increasing the average/maximum connection delay.

A final consideration for CAD tools that cannot be overlooked is the amount of

computational resources that are required to generate a solution. In order for an

automated layout tool to be useful to FPGA architects, the application must be able to

produce a layout within a reasonable amount of CPU time and utilizing a reasonable

amount of physical RAM. These aspects were important considerations in the design of

the router since similar commercial CAD tools for VLSI place-and-route have substantial

hardware requirements [10]. We expect that a high-quality design and memory

utilization strategy is necessary to ensure our router can function effectively with a

reasonable amount of hardware resources. Our initial expectations regarding hardware

utilization anticipate that the inter-cell routing module could route the largest circuit in

our test suite in 15 minutes on a 1 GHz processor using, at a maximum, 256 MB of

physical RAM. These computational constraints serve as an initial filter for various data

representations and heuristics that were considered in the design phase of the routing

module.

4.3 Routing Grid

The router is required to connect up the cell pins of the logic design. This task is

accomplished by defining the position of the metal segments that carry the logic signals

 34

across the FPGA tile in order to implement the high- level FPGA architectural functions.

An important aspect of the inter-cell routing component of ATL is the internal

representation of the area available for routing wires. Since the router algorithm

constantly requests information about the “status” of the metal area, the accessibility and

memory efficiency of the metal area’s internal representation is paramount in the design

of the inter-cell routing module.

The goals and constraints defined for the router in the previous subsection

emphasize that the success of the router is a more important consideration than

minimizing the amount of computational resources required by the routing heuristic.

Two dominant representations of the metal surface have emerged for detailed routing

algorithms in VLSI CAD tools [11]. The first of these representations is a grid that

partitions the metal surface into equally sized regions, called nodes. The routing grid

representation maintains explicit information as to which metal connection(s) occupy

each routing grid node. The second representation records the state of the metal surface

in a list of wires – each representing a single metal segment. The grid data structure

requires more physical memory, since information is maintained about all locations on

the routing surface, while the edge list approach only maintains information about the

locations that are currently occupied by a routing connection. However, the grid

representation has a distinct speed advantage since a constant time algorithm is available

to identify whether a particular region of the routing surface is occupied. In contrast, the

edge list approach requires a linear search through a small set of edges to answer a

similar ‘occupancy’ query. Based on these reasons, we decided to use the grid approach

 35

to represent the metal surface in the router. The rest of this sub-section provides details

as to the exact relationship between the routing grid and the physical metal surface, how

the information from the netlist placement is transferred to the routing grid, and how the

routing grid serves as a convenient abstraction to shield the routing algorithm from

actively considering layout design rules.

4.3.1 Design Rule Considerations

Current technological limitations enforce certain restrictions on the relative

placement and connectivity for IC components in the layout. These restrictions are

necessary to ensure that the layout has a reasonable chance of surviving the fabrication

stage without any defects. Our project must consider these constraints in order for the

generated layouts to be representative of a legal solution to the VLSI routing problem.

Each VLSI process technology has a detailed set of process “design rules” that define the

minimum distances between different types of metal wires that should be respected in

order for the resulting layout to have a reasonable chance to pass the fabrication phase

without experiencing a fault created by process variations. A single fault in a VLSI

circuit renders the entire fabricated circuit useless. Therefore, it is critical that the routing

solution respects the process design rules.

The design rules for a process are specified in terms of absolute distance, that is,

µm. However, since each process size defines a unique set of design rules, it is unlikely

that a layout in one process is transferable to another process. An alternate to using

physical distances in the specification of design rules is to represent the constraints as

 36

“Scalable CMOS Design Rules” [8]. This approach involves defining all design rules in

terms of integer multiples of a base unit, λ, which is equivalent to ½ the minimum

transistor length for the VLSI fabrication process. The primary advantage to this

approach is that layouts that abide by the scalable design rules can be implemented in a

wide range of semiconductor fabrication processes. Unfortunately, processes in the deep

sub-micron range (λ ≤ 0.35µm) have additional constraints due to quantum effects and

fabrication limitations. An additional disadvantage is that the design rules must be

conservative. These factors indicate that layouts generated by scalable design rules

generally require more silicon area than equivalent designs implemented using absolute

physical distances. However, since all the scalable design rules are specified in integer

multiples, we believe that using them will greatly simplify the core of the routing

algorithm. Since the primary goal of our project is to determine the feasibility of an

automated approach to transistor- level design and layout of FPGAs, it was decided that

we would be able to answer this question more quickly by using scalable design rules.

The routing grid is a three-dimensional structure. It is composed of an arbitrary

number of metal layers – a parameter specified by the user to ATL. Each metal layer is

divided into a grid of “squares”, called routing grid nodes. Each routing grid node

represents an 8λ x 8λ region of silicon area available for metal interconnect. The size of

a node is chosen to be the minimum area such that two wire segments carrying different

electrical signals can be positioned in adjacent routing grid nodes without violating any

constraints imposed by process design rules. The scalable design rules for a 0.13µm

process specify that the minimum width for metal wires on all layers except metal 1 is 4λ

 37

and that the minimum spacing between wires is also 4λ. However, since the 1st layer of

metal is reserved for intra-cell routing, these scalable design rules are layer- invariant. If

the scalable design rules were not used, it would not be possible for the routing grid to

have uniform design rules on each layer of metal. In that case, the structure of both the

routing grid and routing algorithm would be substantially more complex.

There are significant advantages in having layer-invariant design rules. First,

uniform dimensions for all routing grid nodes simplify the legality in using vias – the

VLSI interconnect component that connects two pieces of metal on different layers.

Several design rules that involve via legality do not play factor when the design rules on

adjacent layers are equivalent. A second benefit is that each routing layer will have an

equal number of routing grid nodes. This permits the three coordinates of a routing grid

node (layer, x, and y) to be easily represented by an “encoded” index. All data structures

that reference routing grid nodes utilize the encoded routing grid index, as opposed to

explicitly defining the three coordinates. This results in substantial memory savings for

ATL.

The inter-cell routing algorithm selects routing grid nodes to connect up the logic

design. This information is not sufficient to generate a complete layout that can be

implemented on silicon. The representation of the metal region inside each routing grid

node must be exactly defined. This involves specifying the occupancy of each 1λ x 1λ

unit of metal. This information is extracted based on the immediate connectivity of a

routing grid node. In order to support all possible connectivity configurations, each

 38

routing grid node has been divided into non-overlapping sub-regions. Figure 12 shows

the breakdown of the metal area of a single routing grid node into the different sub-

regions. In this diagram, each square represents a 1λ x 1λ unit of metal.

Figure 12: Relationship between Routing Grid Nodes and the Metal Area

 For all grid nodes that are used in the routing of the circuit, the “default” 4λ x 4λ

sub-region located in the centre of the available metal area used. The 2λ x 2λ port/via

sub-region is used if there is either a port or a via in that node. These layout choices

respect the design rules involving via enclosure. The other four sub-regions are used if

the nodes on the same metal layer that are adjacent to the node in question are used in the

routing of the same net. Since each sub-region represents a distinct piece of metal, a

routing grid node may contain any combination of the sub-regions. Figure 13 shows the

additional sub-regions that are used for each node in the routing of a sample net on one

layer of metal. Each square in the diagram represents a single routing grid node. The

letters L/R/T/B represent that the “Left Wire”, “Right Wire”, “Top Wire”, and “Bottom

 39

Wire” sub-regions, respectively, are used in that routing grid node. It can be easily seen

that the resulting metal segment is unbroken and respects all design rules considered by

the router.

 R L/R L/R/B L/R L

 T/B

 T

Figure 13: Underlying metal representation for routing grid nodes

4.3.2 Coordinate Transformation

The inter-cell router only deals with connections that are between the cells. The

intra-cell layout module defines the connections that are fully contained inside a single

cell. In order to obtain a relatively compact layout, two metal layers have been dedicated

to intra-cell routing. It was decided that the routing module exclusively use the metal

layers above metal 2 to connect the cells together. Since intra-cell layout is restricted to

metal 1 and metal 2, all the “other” metal layers are unoccupied (i.e. have no metal

segments in them) when the routing phase commences. This design decision was made

since cells occupy the majority of the area in the tile (>90%) leaving only a small amount

 40

of available metal area on the bottom two layers of metal routing. Additionally, there

would be significant complexity introduced by allowing the router to use the same metal

layers as intra-cell layout since the explicit design rule checking would be required to

ensure electrical legality. To accomplish this, the internal layout of each of the cells

would need to be exposed to the routing module. Therefore, restricting the router in this

manner allows all cells to be treated as “black boxes”. Because of this, the overall layout

will be electrically legal provided that the router generates a solution that completes all

the connections specified by the netlist.

In order to create an electrically legal routing, a conversion of the positional

information from the placer coordinate system to the router coordinate system is required.

It is imperative that this transformation maintains the aspect ratio of the FPGA tile, the

relative positions of the cells to the FPGA tile, and the relative positions of the cell pins

inside the cells – all specified by the placement phase. Provided that each cell pin is

specified at a unique location, it is possible for the routing grid to be identical in size to

the placer grid. This implies that each location on the placer grid represents an 8λ x 8λ

area on the metal surface. If a unity mapping between the coordinate systems is used, the

intra-cell layout information is exactly preserved. If a unity mapping is not preserved,

then the coordinate transformation will “skew” any implicit intra-cell layout information

in the cells. It should be noted that the uniqueness requirement does not apply to ports on

the perimeter of the tile since these ports, unlike cell pins, are not bound to a single layer

of metal. Therefore, it is possible to resolve multiple tile ports at the same location into

different layers of metal without losing any intra-cell layout information. The only

 41

limitation is that the number of tile ports at any given layer is less than or equal to the

number of metal layers available for inter-cell routing.

Limiting the input netlists to the routing module to respect the constraints defined

above would reduce the usefulness of the router. In order for the routing module to be

able to accept netlists that specify multiple pins at the same tile location, the routing grid

needs to be larger than the placement grid. We use the concept of grid granularity to

represent the relationship between the sizes of the placement grid and the routing grid.

Specifically, defining a grid granularity of g specifies that the dimensions of each metal

layer on the routing grid are g times larger than the dimensions of the placement grid.

For example, if the placement grid size is 150 x 200 units and a granularity of 2 is

specified, the routing grid size would be 300 x 400 units. However, the metal area that

each routing grid node represents is 8λ x 8λ, regardless of the granularity of the routing

grid.

The value of g is limited to integer values greater than or equal 1, since a

transformation that preserves the location information in the placer netlist cannot be

defined for non-integer values of grid granularity. The only limitation on selecting grid

granularity is that the cell pins that appear on the placed netlist must be able to be

uniquely resolved into routing grid nodes. Since the size of the routing grid is

proportional to the square of grid granularity, it is extremely important to keep this value

as small as possible.

 42

The netlists that were produced by the original ATL code had multiple cell pins

appearing at a single placer grid location since it did not utilize specific intra-cell layout

information. Although the placer can operate successfully in the presence of

“overlapping” pins, the router is unable to since it is electrically impossible to place more

than one pin in an 8λ x 8λ area of silicon. The concept of grid granularity enables the

routing module to transform these netlists to the routing grid and try to successfully route

the circuit. By increasing grid granularity, any placed netlist can be routed by the routing

module, irrespective of whether an exact intra-cell layout has been defined. However,

once an intra-cell layout has been defined, the exact locations of the cell pins are known,

relative to the cell, and are guaranteed to be non-overlapping. Therefore, a grid

granularity of 1 (unity mapping) can be used for all netlists that implicitly contain intra-

cell layout information. Furthermore, all values of grid granularity other than 1 will

distort any implicit intra-cell layout information contained in the netlist.

The validity of the solution produced by ATL is intimately dependent on the fact

that the intra-cell layouts for all cell types in the FPGA tile are specified according to an

8λ x 8λ “grid”. Specifically, the size of each cell on the netlist corresponds to a layout of

the exact size assumed by the router us ing a unity mapping to translate the placer

coordinate system to the router coordinate system. Additionally, the positions of the

ports for each cell type must be located at the region available for ports, as specified by

Figure 12. For example, if the layout for an SRAM cell is 32λ x 48λ, the size of the

SRAM cell on the netlist must be 4 units by 6 units. Ports on the SRAM cell must be 2λ

x 2λ and the lower left-hand corner of the ports can only be positioned at one of the

 43

locations specified by the following relationship: [(8x + 3)λ, (8y + 3)λ], where]3,0[∈x

and]5,0[∈y . If both these conditions hold and the grid granularity is set to 1, then the

routing grid will be an exact representation of the silicon area used to layout the SRAM

cells. If the layout for all netlist cells satisfies these conditions, the routing module will

contain the “true” view of the entire chip.

Before the routing algorithm is discussed, we present the procedure for resolving

multiple pins at the same location in the placement grid. The original pin positioning

code developed in [2] places the pins on the perimeter of the block and tries to group

different pin classes to be representative of a potential layout. The procedure used to

assign routing grid coordinates to each block pin begins by classifying each placer grid

coordinate to one of nine regions based on the various sides of a cell directly reachable

from the placer grid coordinate. Figure 14 outlines the classifications for a coordinates

inside a cell that has dimensions 4 x 5 (in terms of the placer grid).

Top Left Top Middle Top Middle Top Middle Top Right

Middle Left Middle Middle Middle Middle Right

Middle Left Middle Middle Middle Middle Right

Bottom Left Bottom Middle Bottom Middle Bottom Middle Bottom Right

Figure 14: Classification of block coordinates for the pin placement algorithm

 44

For each coordinate classification that represents a placer grid coordinate adjacent

to an edge of a cell, block pins can be positioned in the routing grid spaces that map into

that single placer grid coordinate. Assuming a grid granularity of 3, a single square in the

placer grid represents a 3x3 region of routing grid nodes. It was deemed that the non-

corner squares can support three block pins; one pin on the “edge” of the block at each

routing grid coordinate. The rationale for this decision is that block pin congestion would

be significant if pins were placed two rows deep – the 2nd row of pins (i.e. the pins closer

to the middle of the block) would be forced to use a via in order to connect to another

block pin outside the cell. The corner squares can support four block pins, one pin for

each router grid square on the perimeter, but not on the direct corner of the block. This

decision seemed obvious since it would be difficult to imagine a layout that would have a

pin at the direct corner of the block. Figure 15 illustrates the valid pin positions for each

of the nine coordinate classifications, assuming a grid granularity of 3.

Top Left Top Middle Top

Right

Middle
Left Middle

Middle
Right

Bottom
Left Bottom Middle Middle

Right

Figure 15: Pin positions used to resolve contentions on the placer coordinate system

 45

For each cell, the algorithm assigns positions to each block pin based on its

coordinate classification and on the number of pins that have already been assigned to

that square on the placer grid. The algorithm has been designed to be flexible in both the

granularity of the router grid coordinate system and the legality of the block pin positions

for each coordinate classification.

4.3.3 Routing Grid Abstraction

The primary purpose of defining the routing grid and a complicated mapping

between the coordinate systems in ATL is to isolate the routing algorithm from actively

considering issues involving design rule legality. If the router can find the sequences (i.e.

paths) of routing grid nodes that should be used to electrically connect the logic design

together such that every routing grid node is used, at most, one time. The underlying

metal representation of the circuit is extracted based on node connectivity, as was

previously illustrated in Figure 13. The size of each routing grid node is specified such

that the design rules involving metal spacing, metal width, and via enclosure are all met if

two wires carrying different electrical signals are positioned in adjacent grid nodes.

Since the routing algorithm can only select the sequence of nodes for a given position, it

is guaranteed that the metal wires inferred from the path selections made by the router are

legal, with respect to the design rules being considered.

 46

4.4 Routability-Driven Router

The routing algorithm is an extension of the classical maze router approach [12],

with various elements incorporated and adapted from routing algorithms for FPGAs

[4],[9]. Although the FPGA routing algorithms that we have examined do not define

silicon metal wires, they operate on a “resource graph” [9] – an equivalent of the routing

grid. This sub-section will discuss the key aspects of the routing algorithm, the primary

reasons for its success, some additional enhancements to improve the performance and

speed of the algorithm, and the results it has obtained. The routability-driven router does

not actively consider the delay of each path. Instead, its only focus is to generate a legal

solution. Since the routing algorithm we developed is the first known work attempting to

perform a combined global-detailed route at the transistor level for an FPGA tile, the

emphasis was placed on feasibility. However, connection delay is given secondary

consideration, since the router is trying to minimize wirelength, which has an indirect

correlation with the delay of a routing path.

4.4.1 Algorithm Structure

Using terminology developed in the previous sub-sections, the routing problem

can be restated as follows: determine, for each net, a sequence of routing grid nodes that

electrically connects all the terminals of that net, such that no rout ing grid node is used by

more than one net. The routing algorithm also tries to minimize wirelength used and

balance the delay for all the connections in the circuit. A net that needs to connect more

than two terminals together is called a net with multiple fanout. The starting point, called

the source, is required to connect to several destination terminals, called sinks. All cell

 47

pins that are sources represent an electrical connection to the drain of a transistor.

Similarly, all cell pins that are sinks represent an electrical connection to the gate of a

transistor.

The routing of a single connection essentially involves running Dijkstra’s

algorithm [13] on the routing grid trying to find the shortest path (lowest total cost)

between the source and the sink nodes. The routing grid has implicit edges between

adjacent routing grid nodes. The weight on each edge in the entire graph is set to unity.

The routing of a net essentially consists of routing several two-pin connections, each

having the same source node. However, since all sinks on the same net are electrically

equivalent, the router can “re-use” any routing grid nodes that have been selected in the

routing paths for connections on the same net. Therefore, the routing of high-fanout nets

is a tree- like structure, as opposed to a series of isolated connections.

An important term used in the description of the routing algorithm is the

“wavefront” of the net. The wavefront is the set of nodes currently being considered by

the search algorithm. When a new connection is considered, the wavefront consists of

the nodes that have already been selected for this net. The algorithm then considers

routing grid nodes adjacent to the nodes currently in the wavefront – in effect, expanding

the extent of the wavefront. This process continues until the sink being searched for is

included into the wavefront of the net.

 48

The computational complexity of Dijkstra’s algorithm and the traditional maze

router approach is O(n2), where ‘n’ is the number of nodes in the routing grid. Several

FPGA tiles we are routing have over one million routing grid nodes. The size of these

tiles imply that a heuristic having a computational complexity O(n2) will be unacceptably

lengthy. The creators of Pathfinder describe an essential enhancement to improve the

speed of the routing algorithm. The simple breadth-first approach of Dijkstra’s algorithm

is extended to use an A*, or directed, search [9]. By considering an additional cost term

(in addition to path distance) in the algorithm that is based on the distance to the target,

the execution time of the algorithm can be greatly reduced. When this approach is run in

the absence of congestion, the computational complexity is O(n) provided that the costs

of any two adjacent nodes are ordered such that the node closer to the target has a lower

cost than the node farther from the target.

The traditional maze router approach [12] does not allow the overuse of routing

resources. This fact exposes the severe limitation that one routing path may block

another path. Since the FPGA tile has thousands connections, this path “blocking” is

inevitable. In order to overcome this limitation while still using an algorithm that routes

the netlist connections serially, our routing algorithm uses the negotiated congestion

principle that is present in both the Pathfinder [9] and VPR [3] routing approaches. The

crux of negotiated congestion is allowing the overuse of routing resources and using the

cost function to allow congestion to gradually be resolved as the algorithm progresses.

These algorithms repeatedly rip-up and re-route every net in the circuit until all

congestion is resolved – this idea is due to Nair [15]. Ripping-up and re-routing every

 49

net in the circuit once is called a routing iteration. ATL continually performs routing

iterations until the circuit can be legally routed without any congestion or a maximum

number of iterations have been reached, at which point the router declares the circuit

cannot be legally routed. Figure 16 contains the pseudo-code for the routability-driven

routing algorithm used in ATL.

 50

Let: RT(i) be the set of nodes, n, in the current routing of net(i);

PriorityQueue be a set of { TotalCost(n), PathCost(n) } pairs for each node, n, in
the current wave expansion, sorted on TotalCost

StoredTotalCost be arrays with one entry per routing grid node, with all entries
initialized to a huge number

PresCost and AccCost be arrays with one entry per routing grid node
representing the current congestion and accumulated congestion costs of using
that node in the routing of a connection

while (overused resources exist) { /* Illegal Routing? */
 for (each net, i) {
 rip-up routing tree RT(i) and update affected PresCost values;

 RT(i) = NetSource(i);

 for (each sink, j, of net(i)) {
 PriorityQueue = RT(i) at { TotalCost(n) = α(DistanceToTarget(n)),

PathCost(n) = 0 };

 while (sink(i,j) not found) { /* wave expansion */
 Remove lowest TotalCost node, m, from PriorityQueue;

 if (TotalCost(m) < StoredTotalCost(m)) {

 StoredTotalCost(m) = TotalCost(m);

 for (all adjacent nodes, n, of node m) { /* expand node m */

 PathCost(n) = PathCost(m) + PresCost(n) * AccCost(n);
 TotalCost(n) = PathCost(n) + α(DistanceToTarget(n));

 if (TotalCost(n) < StoredTotalCost(n)) {
 Add n to PriorityQueue at { TotalCost(n), PathCost(n) };
 }
 }
 }
 } /* end wave expansion */

 for (all nodes, n, in path from RT(i) to sink(i,j)) { /* backtrace */
 Update PresCost(n);
 Add n to RT(i);
 }

 for (all nodes, n, expanded during previous wave expansion) {
 StoredTotalCost(n) = HugeNumber;
 }
 }
 }

 } /* end net routing */

 Update AccCost(n) for all n;
 Update PresCostMultiplier & PresCost(n) for all n;

} /* end routing iteration */

Figure 16: Pseudo-code of the routability-driven routing algorithm

 51

4.4.2 Routing Representations

An examination of the pseudo-code contained in Figure 16 reveals that the routing

algorithm uses two major data structures: a priority queue to maintain the list of nodes,

sorted by total cost, that are currently in the wavefront expansion and a routing tree to

identify the connectivity pattern of the nodes currently contained in the routing of a net.

A heap was chosen to implement the priority queue, since the routing algorithm only

wants to examine the node in the wavefront expansion with the lowest cost.

The only complicated operation that is performed on these data structures is the

addition of the nodes in the path from RT(i) to the sink(i, j). In order to discuss this

operation, the structure of the routing tree needs to be explained. The physical structure

of the routing tree is intuitive; it contains the routing grid node indices for all of the

connections in a given net in a tree-like format. “Join points” are the only nodes in the

routing tree that have more than one child node. At the start of the routing of each net,

the routing tree consists of exactly one node – the routing grid node representing the

source of the net. After the routing algorithm determines the path for each connection on

the net (all nets have at least one connection), the routing tree is updated to reflect the

new path by examining the sequence of heap elements selected to be part of the new path.

The 1st heap element considered by the routing algorithm will be a node that exists in the

routing tree at the beginning of the wavefront expansion algorithm. Due to this fact, it is

possible to correctly update the tree and identify the join point for the new segment of the

net’s routing.

 52

In addition to the heap and routing tree data structures, we decided that there

should be a common data structure for representing a sequence of routing grid nodes.

This was a necessary step since the intra-cell layout, inter-cell routing, and graphical

editor modules were developed in parallel. We decided to use a linear linked list data

structure of routing grid nodes to communicate the sequence of interconnect segments

used to route the each connection in the netlist. This linear linked list of routing grid

nodes will be called the “traceback” for a net. The traceback is composed of segments,

where each segment identifies the new routing grid nodes selected by the algorithm for

each successive connection in a net. In order to identify join points, each segment of the

traceback structure needs to repeat one of the routing grid nodes in a previous segment of

the net. Additionally, a “separator” element in the traceback structure is needed to

identify the beginning of a new segment. The equivalent traceback data structure for a

potential routing for a 3-pin net on a sample routing grid is displayed in Figure 17.

1 2 3 4 5 6 7

8 9 10 11 12 Pin C
13

14

15 16 17 18 19 20 21

22 Pin A
23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 Pin B
39 40 41 42

43 44 45 46 47 48 49

Associated Traceback: 23à24à25à32à39àXXà25à26à27à20à13

Figure 17: Representation of the Traceback Data Structure

 53

The routing tree and the traceback are essentially two different representations of

the same information; that is, they contain the routing grid nodes used to connect the

different terminals of a single net. Both representations are useful since each has unique

advantages based on the position in the program flow that needs to access current routing

information. The routing tree is more convenient representation when the rout ing engine

is active since it is less cumbersome of identifying the join points in a net’s routing.

Additionally, according to [4], the routing tree structure is more appropriate for storing

timing information, a future goal for the ATL router. However, the traceback data

structure provides a more compact representation, it is easier to traverse, and most

importantly, the traceback is segmented into a series of connections that mimics the

ordering of connections in the cell- level netlist. This correlation is required so that there

is a logical linkage between the routing and the circuit description. The routing tree data

structure does not have this essential relationship. Figure 18 shows the contents of each

of the data structures as each connection in the net of Figure 17 is routed.

 54

Algorithm Stage

Routing Tree

Traceback

Before 1st connection

23

Nothing

After 1st connection

23 24 25 32 39

23à24à25à32à39

After 2nd connection

23 24 25 32 39

2627

20 13

23à24à25à32à39à
(sep.)à25à26à27à

20à13

Figure 18: Comparison of Routing Tree and Traceback Representations

4.4.3 Cost Function

As shown in the pseudo-code algorithm, the routing algorithm assigns a “cost” to

a routing grid node being considered in the wavefront expansion based on the cost of the

previous node on the path being considered, the current congestion of that node

(PresCost), and the historical congestion of that node (AccCost). In essence, the cost

reflects the circuit’s demand to use a specific point of the metal area and the total amount

of metal on the path required to reach this node. It is critical to realize that the algorithm

considers not only the cost of the routing grid node currently being considered in the

directed breadth-first search, but also the cost of every routing grid node on the “best-

 55

case” path to reach current point on the wavefront. The notion of the “best-case” path is

guaranteed since the router will never add a node to the priority queue if another path has

been considered that has a lower cost to that node.

As already described, congestion arises when two nets occupy the same routing

grid node. Therefore, when considering a routing grid node to be used for the connection

being routed, congestion will occur if one or more nets already occupy that node. The

formula for the value of the present congestion cost, PresCost, is given by Equation 1,

where Occ(n) represents the occupancy of the routing node being considered and

PresCostMultiplier represents the “severity” of congestion at the stage in the routing

algorithm. The lower bound on present cost is 1.0, representing the intrinsic cost of using

this routing element.

tiplierresCostMulPnOccnresCostP ⋅+=)(1)(

Equation 1: Present Congestion Cost for Routing Grid Nodes

The principle of negotiated congestion is realized by setting PresCostMultiplier to

be unity in the first routing iteration and increase it exponentially for all routing iterations

that end with congestion remaining. Specifically, it was determined that defining

itertiplierresCostMulP β= , where iter is the current iteration number, and β = 1.15,

provides a balance between trying and removing congestion and minimizing the

wirelength used by the circuit. In order to increase the importance of congestion as the

algorithm progresses, the constant β must be greater than unity. As β increases, the

router tries to remove the congestion more quickly and, in most cases, produces a

solution that requires more wirelength, or declares the circuit to be not routable.

 56

The accumulated, or historical, cost “future” cost of the path represents the total

pressure experienced on a specific routing grid node over all the routing iterations. This

term in the cost function helps the process of resolving node congestion by identifying

the nodes that should be avoided. This indicates to the router that a node that has

continuously been congested should only be used when it results in significant savings

(i.e. much lower cost function). This cost function term is especially important when the

routing of a net is “forced” to use a congested node and all the congested nodes have

equal present congestion. In order for the solution to move towards convergence, the

router must select the node that has less historical congestion. Equation 2 specifies the

formula for adjusting the accumulated cost of a routing grid node at the end of a routing

iteration. At the beginning of routing, AccCost is set to unity. It was found that α = 0.25

provides a good balance between the multiplicative weight of historical congestion and

present congestion when a node is being considered in the wavefront expansion.

)()()(nOccnAccCostnAccCost ⋅+= α

Equation 2: Historical Congestion Cost for Routing Grid Nodes

The final aspect of the cost function is the relative weights of the “explored” to

the “unexplored” portion of the path being considered. Equation 3 specifies the formula

for the total cost assigned to a node n, a neighbour of node m, the node currently being

considered in the expansion process. The function DistanceToTarget(n), is the minimum

Manhattan (i.e. rectilinear) distance to the sink node of the current connection being

routed. It should be noted that the Manhattan distance to the target is equal to the lower

 57

bound of PathCost(target) - PathCost(n). This is one of the requirements of the A*

search algorithm enhancement [14].

[])()()()()(nrgetanceToTaDistnAccCostnresCostPmPathCostnTotalCost ⋅+⋅+= α

)()()()(nAccCostnresCostPmPathCostnPathCost ⋅+=

Equation 3: Expansion Costs for Routing Grid Nodes

The constant α determines the “directedness” of the routing algorithm. For values

of α greater than 1, a routing node that is closer to the target than any node in the

wavefront will have the lowest cost, provided it is not currently congested. Since the

lowest cost node is always pulled from the heap first, the algorithm will only explore

nodes that move towards the target. This is only true if all nodes being explored are not

congested. The effect of congestion alters the selection of routing grid nodes in the

expansion process. The cumulative effect of all three fundamental equations involved in

the router cost function is that the router identifies a solution as quickly as possible when

there is no congestion, but considers alternate paths depending on the severity of the

congestion.

4.4.4 Speed Enhancements

The amount of CPU time required for the algorithm presented in the previous sub-

sections is heavily influenced by the amount of free space in the routing grid and the

number of metal layers that the router is allowed to use to route the circuit. Allocating a

larger size to the routing grid – in effect, increasing the percentage of “free space” in the

routing grid – or increasing the number of layers available to the router dramatically

 58

reduces the CPU time required to route the circuit. The explanation for this phenomenon

is based on the schedule for PresCostMultiplier. The routing algorithm cost function

schedule increases this multiplier exponentially as the algorithm progresses. Therefore,

in a situation that is a deterministically unroutable, the algorithm will continually explore

(in futility) an increasing number of paths before declaring the “best” path, based on total

cost, to be a congested one. For scenarios that are on the threshold of being routable, the

router requires many routing iterations in order to resolve all the congestion. In contrast,

a situation that is “easily” routable requires significantly fewer routing iterations and can

be routed in a fraction of the time. Adding a new metal layer to the routing grid for a

circuit on the threshold of being routable can decrease the CPU time required by an order

of magnitude. Adding two metal layers can decrease the CPU time by two orders of

magnitude. However, after a certain point, no further time reductions can be obtained by

adding additional metal layers.

One of the simplest speed enhancements made to the routing algorithm that was

implemented is to identify whether a net is currently legal and instructing the routing

algorithm not to perform a re-route of a net unless at least one routing grid node in that

net is currently congested. This does not degrade the quality of the routing since,

generally, the total wirelength used to route a net increases as the router tries more

diligently to remove congestion. If the router finds a solution with no congestion when

the weight assigned to congestion is low, then we can declare the initial legal solution to

be the “best” legal solution in the routing context and no further routing attempts are

needed for that net. If the router cost function picks a routing grid node on a legally

 59

routed net to be used by congested net, then the legally routed net becomes congested

again and it will be re-routed in the next routing iteration.

The time saved from not re-routing legal nets is substantial. On average, over

90% of the nets are legally routed when the router reaches the “halfway” iteration mark

of the legal solution. That is, if the router takes 50 iterations to find a solution, 90% of

the nets are legally routed at iteration number 25. However, the speedup from this

enhancement is not proportional to the percentage of nets that are routed since most of

the legally routed nets are 2-pin nets, whereas the remaining congested nets have a

significant number of pins. An important point of this speed enhancement is that it does

not introduce any degradation in the routability of any circuit. That is, this speed

enhancement will not prohibit the router from finding a legal routing for the circuit, if one

exists.

Another enhancement was made to the core of the routing algorithm after several

circuits took an unexpectedly long time to route a single net. After some investigation, it

was discovered that the router was using an extremely large amount of memory to route a

connection and was increasing the CPU time of the routing algorithm due to the

swapping of memory to and from the hard drive. The situation that occurred was that

thousands of copies of many congested routing grid nodes were being placed onto the

routing heap. Although a node is added to the heap only if the cost to that node is less

than the lowest path cost to that node. However, the lowest path cost,

StoredTotalCost(n), is only set after a path to that node is considered. Since the routing

 60

grid nodes causing the problems were congested, the costs of these nodes were high

enough so that they were never being pulled from the heap. Therefore, each of the

thousands of expansions to these nodes was added to the heap. This is plausible since the

number of paths between any two nodes is exponential based on the distance between the

nodes.

The “enhancement” that was developed to fix this problem exploited the principle

that the relative costs for the expansion a single routing grid node are only dependent on

their historical costs. That is, the costs assigned to the neighbours a routing grid node

will be at a minimum for the minimum cost path that reaches that node. Therefore, it is

not necessary to expand that node for any path other than the minimum cost path. We

define the “active heap element” of a routing grid node to be the element on the routing

heap representing the minimum cost path to that node. Additionally, we change the

requirements for a routing grid node to be added to the routing heap to include the

condition that the path cost to that node is less than the path cost of the active heap

element for that node, if one exists. This solution bounds the number of elements that

can appear on the routing heap, limiting the memory used by the routing algorithm, and

fixing the original problem.

Another modification that was considered to improve the speed of the routing

algorithm is modify the routing grid node expansion process to add nodes onto the heap

that are not directly connected to the node being expanded. The additional nodes that are

added to the heap are in the same line as the nodes being expanded, closer to the target,

 61

and a significant distance from the node being considered. This process is dubbed “beam

routing” since to the position of the additional nodes being considered are in a straight

line, as a beam of light, in the direction of the target. Figure 19 shows the locations of

nodes being considered by the expansion of the node X.

 SINK

 X

Figure 19: Routing Grid Nodes Considered by Beam Routing Approach

Although the beam routing approach speeds up the routing of a single net by

reducing the number of elements added to the heap, it does not work well in the presence

of congestion. Therefore, special precautions were made to ensure that beam routing

expansion does not double-back on itself and specify an illegal routing path.

Experimental results have shown that beam routing has a negative effect on the CPU time

required by the router since the computational effort required for determining the

situations where beam routing can be legally applied is greater than the amount of time

that is saved by exploring the nodes far away from the target. Therefore, it can be

 62

concluded that this approach, which appeared to look extremely promising in the

theoretical stage, has no utility in practice and that the router achieves a better solution by

methodically examining the routing grid one node at a time instead of trying to take

shortcuts.

One final technique to reduce the CPU time required is the addition of logic to

predict whether the routing algorithm will eventually fail and terminate the algorithm

once an accurate prediction of failure can be made. As previously discussed, the router

takes significantly more CPU time for circuits that are not routable. This enhancement

will improve the average time of routing a circuit. However, it will not improve the

amount of time to route circuits that have a congestion-free solution or are extremely

close to have a legal solution. The prediction code maintains a history of the number of

overused routing grid nodes for all of the previous routing iterations. The code that

makes the decision whether to terminate the algorithm considers the number of overused

routing grid nodes and the slope of the historical numbers for overall congestion. For

unroutable solutions, the router will terminate in less than one-third the time than letting

the router attempt the maximal number of routing iterations.

4.4.5 Performance Enhancements

The routing algorithm structure presented in Section 4.4.1 focuses exclusively on

resolving congestion and minimizing wirelength. The main limitation of the cost

function is that the path cost term is exclusively influenced by congestion at the node

being explored. The routability of a logic circuit can be improved by providing

 63

additional information to the cost function about the decisions it can make that influence

the global congestion of the circuit. For example, it was found that the congestion near

the edge of the circuit is particularly high since all connections that travel between cells

are required to connect to the perimeter of the FPGA tile. Therefore, it is useful to

instruct the router to avoid using routing grid nodes near the perimeter of the chip unless

absolutely necessary. Additionally, by reducing the number of vias and bends in the

circuit, the overall routability can be improved. Finally, some VLSI routing approaches

[19] specify that routing the majority of routing connections on the same layer in the

same direction (i.e. horizontally or vertically) for any give same layer allow more routing

tracks to be used in the available routing area. However, it is important that each of these

considerations be treated as guidelines and not as hard-and-fast rules. For example,

restricting all connections in metal 2 to route vertically would limit the search space of

the routing algorithm.

During the incorporation of these concepts into the router cost function, it was

decided that the fundamental structure of the algorithm must not be perturbed due to its

proven success in solving complex routing problems. Specifically, any transformations

applied to the cost function must not affect the negotiated congestion aspect of the

algorithm. Furthermore, it was realized that the cost function is structured so that two (or

three) routing grid nodes adjacent to the node being explored would be assigned equal

cost, assuming that there is no straight line from the node being considered to the target.

Figure 20 shows the costs assigned to each node by the routing algorithm for a

congestion-free circuit during the wave expansion for a 2-pin net. It is assumed that the

 64

multiplier for the DistanceToTarget function, α, is set to 1.1. As seen in the diagram, for

each routing grid node being expanded, both nodes that are closer to the sink are given

equal costs. Since the nodes have equal costs, the routing heap “randomly” selects one of

the two nodes to be expanded. It was recognized that the introduction of a small

difference in the cost of routing grid nodes to reflect routing decisions on a global level

would achieve the desired result, while not reducing the search space of the routing

algorithm.

 SINK

 9.6

 11.8 9.7 9.6

 11.9 9.8 9.7

 12.0 SRC 9.8

 12.0

Figure 20: Costs Assigned in Wave Expansion Algorithm

The routing algorithm was enhanced with several “bias factors” that introduce a

small perturbation in the cost function to reflect global routing decisions that improve the

overall routability of the circuit. A “bias factor” is a condition applied to the expansion

of a routing grid node that introduces a small difference in the cost assigned to its

neighbours that has an effect on the global routability of the circuit. Each bias factor is

assigned a value, slightly greater than unity, which represents the penalty that should be

 65

applied to a routing path that violates the bias factor condition. The overall penalty

applied to the node, BiasFactorPenalty(n), is the product of all the individual bias factor

penalties that are applied to the path implied by the routing grid node being considered.

Equation 4 represents the formulae for the PathCost and TotalCost variables that account

for the effect introduced by bias factors.

)()()()()(nPenaltyBiasFactornAccCostnresCostPmPathCostnPathCost ⋅⋅+=

)()()(nrgetanceToTaDistnPathCostnTotalCost ⋅+= α

Equation 4: Expansion Costs for Routing Grid Nodes with Bias Factor Considerations

 Four bias factors are introduced into the router cost function:

• Against Routing Flow: This bias factor guides the router to route all paths on

the same layer in the same direction.

• Against Wire Direction: This bias factor attempts to limit the number of

“bends” in routing paths. Zigzagging paths are commonplace if this bias

factor is not considered.

• Via Usage: Routing paths that use vias are given a small penalty. Although

via use is inevitable, this factor tries to reduce the overall number of vias in

the circuit.

• Edge Usage: Routing paths that are within 10% of the perimeter of the tile

are slightly penalized.

Figure 21 shows the costs assigned to each node by the routing algorithm that

considers the “against routing flow” bias factor for a congestion-free circuit during the

 66

wave expansion for a 2-pin net. It is assumed that penalty for a routing path that

violating this bias factor is 1.01 and that the vertical direction is the “flow” for this metal

layer. It can be seen from the diagram that the node costs are no longer equal and the

router chooses the nodes that route the circuit in the vertical direction.

 SINK

 9.6

 11.81 9.7 9.61

 11.91 9.8 9.71

 12.01 SRC 9.81

 12.0

Figure 21: Costs Assigned in Wave Expansion Algorithm with Routing Flow Bias Factor

 Another improvement that reduces the overall wirelength of the circuit is

explicitly determining the order that connections of a multiple fanout net should be

routed. The netlist lists the destinations of a net in a random order. Naïvely routing the

connections by their position in the netlist data structure can generate extremely poor

results. The situation portrayed in Figure 22 illustrates a situation that can occur when

the connection terminating at SINK1 is routed before the connection terminating at

SINK2. When the routing tree is added to the heap when the 2nd connection is being

considered, the routing algorithm recognizes that SINK1 as the closest node to SINK2. In

this scenario, the overall routing path to SINK2 is extremely poor. By changing the order

 67

of the connections, this effect can be avoided. Figure 23 shows the resulting paths when

SINK2 is routed before SINK1. The wirelength savings from ordering the sinks of a net

are proportional to the number of pins on the net. However, over 90% of the nets in the

circuits being considered by the ATL are 2-pin nets and do not experience any benefit

from sink ordering.

 SINK1

 SINK2

 SRC

Figure 22: Naive Routing of 3-pin Net

 68

 SINK1

 SINK2

 SRC

Figure 23: Routing of 3-pin Net with Explicit Sink Ordering

One final performance enhancement was the introduction of a “clean-up” routing

iteration that re-routes every connection after the router has found a legal solution. By

inspecting the routing visually, using the graphical user interface that was developed, it

was found that several nets had obvious paths that required less bends. These sub-

optimal routes were not corrected since these nets were never re-routed once they were

free of congestion. Additional space for the sub-optimal path was created when the

routing algorithm re-routed another path that was previously blocking the sub-optimal

path. An additional routing iteration where all nets are re-routed is performed to fix these

sub-optimal routes while maintaining the speed advantage gained from not re-routing

legal nets. On average, this enhancement reduces the total wirelength and number of vias

required by the circuit by one-tenth of a percentage point with a negligible increase in

routing CPU time. Additionally, this re-routing phase does not affect the routability of

 69

the circuit since the router will select the same path for a net connection if no

improvement for that connection can be found.

4.4.6 Validation Module

One of the most important tasks for any software system that attempts to solve a

real world problem is the validation of the solution produced by the application. A

dedicated routing checker was developed that verifies that the routing module produces

an electrically legal routing at the routing grid node level. The routing checker does not

consider the legality of the underlying metal representation. Section 4.3.2 describes how

the underlying metal representation is inferred from the utilization of a routing grid node

and the necessary conditions to ensure that the metal representation corresponds to the

implicit intra-cell layout information in the netlist. In addition to validating the routing

solution against the design rules, the checker serves the purpose of increasing our

confidence that the routability-driven router algorithm is “correct” and that the data

structures used to represent the routing are mutually consistent. A stand-alone

verification module lowers the chance that invalid or incomplete data is passed to other

modules in the program flow; in our program, the graphics module uses the results of the

router.

The following major tests are performed in the stand-alone routing checker:

Ø All the destination ports are connected in the routing of each net.

Ø The routing of each net is a tree.

Ø No portion of the circuit is electrically shorted.

 70

Ø The occupancy specified by the traceback data structure agrees with the

occupancy count annotated on the routing grid.

Ø Each adjacent segment in a net's routing is logically connected to each

other. Specifically, the sub-regions in each of the routing grid nodes reflect the

connectivity of that node.

4.5 Placer & Router Communication Loop

It is desirable that each invocation of the ATL application by the user will return a

legal layout to the user. In the cases where the routing algorithm fails to find a legal

route, the placement needs to be modified in order for subsequent routing attempts to

succeed. An iterative loop has been developed between the inter-cell placement and

inter-cell routing modules so that an electrically legal layout will eventually be identified

after one or more unsuccessful routing attempts. An important component in this

iterative loop is the quality of information about the previous routing attempt that is

transferred to the placer. This component allows the placer to adjust for congested

regions that it did not consider in its initial placement attempt. Specifically, the router

records the overall congestion for all routing iterations, the exact nets that could not

legally be routed at the end of the attempt, and the level of congestion over each cell in

the FPGA tile.

The types of modifications made to the placement are primarily dependent on the

amount of congestion at the end of the previous routing attempt. If the router fails by a

significant margin, the placer might need to increase the size of the tile in order to give

 71

the router additional space to resolve the congestion. If the router can obtain a solution

with only one or two congested routing grid nodes, it may be possible for the inter-cell

placer to use the same tile size, but reposition the cells to reduce the localized congestion.

Another alternative that is available to ATL, in the attempt to create an

electrically legal solution, is to increase the number of metal layers available for inter-cell

routing. The results produced by the routing algorithm indicate that an extra layer of

metal can produce an electrically legal solution for a placement that incurred several

hundred routing grid nodes of congestion in its previous routing attempt. Unfortunately,

the number of metal layers available for the layout of an FPGA tile is usually fixed, so

this solution is not viable in all situations.

4.6 Specialized Net Routing

The routing algorithm developed considers the connections specified on the input

netlist. However, the power signals (i.e. VDD/GND) and clock signals are not included

in the netlist and, because of that, not routed. In order for the circuit to be functionally

correct, these global nets must be routed. The routing algorithm can be adapted with

minimal effort to route the power signals, but is not well suited to define a high-quality

clock routing since it is critical to route these nets with low skew.

A typical routing structure for power and ground nets is to use thick, interleaved

wires on the upper metal layers to carry these global signals [16]. This structure is

displayed in Figure 24. This configuration is most beneficial when standard cells are

 72

used, since the power and ground rails run directly over the locations that require the

signals. The routing of the power and ground nets in the ATL application requires more

effort than the standard cell layout style since the inter-cell placement module does not

arrange the cells into rows. The router requires knowledge of the interleaved

power/ground routing structure in the upper metal layers in order to adapt the routing

algorithm to consider these specialized nets. These nets can be routed by first identifying

a number of points on the top metal layer that are directly beneath the power rails and

using these nodes as the “starting” point for the routing tree.

Figure 24: Traditional Power/Ground Rail Layout

Although it possible to identify similar “starting” points for clock nets on the top

metal layer reserved for inter-cell routing, the problem is fundamentally different since it

is important to balance the delay between the connections. Currently, the router attempts

 73

to minimize wirelength for all the connections. Additional logic is required in the routing

algorithm to ensure that the skew in the clock net does not impact the circuit operation.

A bias factor might help in equalizing the delay between the different clock connections.

However, the routing algorithm might perform in an unpredictable manner since the bias

factor would directly contradict the dominant term in the cost function. Since the netlist

does not contain clock connections, it is impossible to realize clock routing for the FPGA

tile. Therefore, this task is left to future extensions to the ATL application.

4.7 Routing Results

Ten netlists representing different types of FPGA tiles were used to test the

success rate, overall quality, and speed of the routing algorithm. Given that this is the

first CAD tool developed that generates a complete layout for an FPGA tile, there is no

commercial application that can be used as a reference point for the routing algorithm.

An additional complication in estimating the results produced by ATL is the

incompatibility in the input circuit file, the cell- level netlist, which was developed

specifically for this tool. However, since ATL performs a transistor-level layout of a

digital logic design, it is possible to convert the netlist to a standard format, such as EDIF

[17], that several commercial CAD tools can process. Although a direct comparison with

another tool cannot be made at this time, useful quantitative and qualitative assessments

of the router’s quality can be derived from analyzing the router results. Finally, the exact

layout sizes obtained by FPGA companies are closely guarded information and cannot be

used for evaluating the performance of the router.

 74

The primary goal of this project is to evaluate the feasibility of an automated

solution to the layout problem for FPGA tiles. This goal translates to the task of defining

quality intra-cell layouts for all the cells that can appear in a tile, deriving actual port

positions and dimensions of the cells, and using this information to place and route these

cells in the tile. The most crucial aspect is to use the exact positional information from

the intra-cell layout phase in the routing grid. Specifically, this implies that a grid

granularity (see section 4.3.2) used to build the routing grid is set to unity. All the results

presented in this section have been run using a grid granularity defined as unity.

 The secondary goal is to evaluate the router’s quality by comparing both the

number of metal layers and additional space required by the routing algorithm against

approximate numbers for similar types of layout problems. It should be noted that the

algorithm always identifies an electrically legal solution given enough metal layers and a

significant space buffer between all cells in the tile. Therefore, the results presented in

this section defines a solution with two numerical quantities: the number of metal layers

required and the area increase required over the original tile size provided by the

placement module. All area values are expressed as a ratio. For example, if a placement

requires a 220 x 220 grid to successfully route, but the inter-cell placer generated a

placement using a 200 x 200 grid, the area increase would be
2

200
220







 = 1.21.

The benchmark circuits used to test the router represent logic array blocks [18]

containing varying amounts of configurable logic and programmable routing. The VPR

architecture generator [4] is the software tool that parses the high- level architectural

 75

description for an FPGA tile and identifies the logical connections required to implement

the tile. As part of [2], Padalia created ten circuits to test the original ATL application.

These circuits are used to test the quality of the router. The name of each circuit

identifies the number of 4-LUT cells contained in the cluster. An appropriate amount of

programmable routing is added to each tile, based on the number of lookup tables in the

tile. Table 4 contains pertinent information as to the number of transistors and nets in

each of the ten benchmarks used to evaluate the quality of the router.

Circuit # Transistors # Cells # Nets Placer Grid Size

tile_1x4 3093 1197 836 156 x 177

tile_2x4 3762 1365 1007 254 x 231

tile_3x4 4359 1483 1146 296 x 310

tile_4x4 4854 1603 1274 333 x 270

tile_5x4 5621 1711 1435 399 x 411

tile_6x4 6336 1853 1586 461 x 450

tile_7x4 7023 1931 1700 514 x 477

tile_8x4 7592 2011 1783 533 x 520

tile_9x4 8459 2108 1908 590 x 575

tile_10x4 9342 2245 2057 640 x 640

Table 4: Physical Information on Benchmark Circuits

An important aspect in CAD tool design is the amount of CPU time required to

complete the operation. As previously discussed, the length of time required to route a

circuit is greatly affected by the stress placed on the router. Routing the same circuit with

one more metal layer finishes over an order of magnitude faster. Table 5 identifies the

low-stress and high-stress routing times for the ten circuits in our benchmark suite1. The

results indicate that the smaller circuits route incredibly quickly, but the algorithm takes a

1 Athlon 1000 MHz Processor with 256 MB of PC-100 SDRAM used for all CPU time results

 76

considerable amount of time to find a solution for the larger benchmark circuits. It seems

clear that the algorithm is not well suited for circuits containing more than ten thousand

transistors and will definitely not scale to designs containing hundreds of thousands of

transistors.

Circuit Low-Stress Routing
(CPU s)

High-Stress Routing
(CPU s)

tile_1x4 3 18

tile_2x4 11 144

tile_3x4 22 238

tile_4x4 37 493

tile_5x4 73 796

tile_6x4 86 974

tile_7x4 124 1357

tile_8x4 190 2158

tile_9x4 233 2785

tile_10x4 306 4051

Table 5: CPU Time Required By The Router

After running the benchmark circuits with many different sets of parameters for

the routing bias factors, cost function weighting factors, and the “directedness” of the

algorithm, a single set that consistently produced decent results was chosen to use as the

basis of the evaluation of the routing algorithm. Table 6 presents the minimum additional

area required to generate a legal routing for each of the benchmark circuits, using several

different selections for the number of metal layers available for inter-cell routing2.

2 The area bloat becomes excessive when circuits above tile_3x4 are routed on 3 layers of metal

 77

Circuit Metal Layers Router Area Ratio

 3 1.124

tile_1x4 4 1.024

 5 1.000

 3 1.257

tile_2x4 4 1.089

 5 1.018

 3 1.335

tile_3x4 4 1.122

 5 1.052

 4 1.231

tile_4x4 5 1.105

 6 1.034

 4 1.265

tile_5x4 5 1.117

 6 1.049

 4 1.294

tile_6x4 5 1.144

 6 1.055

 4 1.319

tile_7x4 5 1.171

 6 1.061

 4 1.351

tile_8x4 5 1.190

 6 1.069

 4 1.377

tile_9x4 5 1.231

 6 1.072

 4 1.410

tile_10x4 5 1.262

 6 1.078

Table 6: Experimental Routing Results for Benchmark Circuits

 78

 Two major observations can be made from the results presented in the previous

table. First, all circuits are fully routable in four layers of dedicated inter-cell routing

metal. After recognizing that two layers are devoted to intra-cell layout and that two

metal layers are sufficient for routing power, ground, and clock nets, it can be concluded

that the entire layout produced by ATL requires eight layers of metal. This number is

comparable with the number of layers required by modern VLSI processes. Therefore, in

this respect the router produces a feasible and quality solution. Second, the amount of

additional area required in order to legally route the circuit is considerable (41% for the

largest circuit), but decreases substantially for each additional metal layer allowed to be

used by the routing algorithm. However, it should be noted that achieving an electrically

legal layout in a few hours for an FPGA tile having the same complexity as modern

FPGA devices is a substantial achievement.

4.8 Summary

In this section we described the routing portion of the Automated Transistor

Layout CAD tool. A description of the representation for the silicon area available for

metal wiring was presented along with a justification of its validity. A routing algorithm

was developed that utilizes several different attributes of previous CAD approaches that

generate high quality results along with many new ideas formulated using specific

knowledge and concepts from both the VLSI and FPGA domains.

The success of the ATL routing algorithm demonstrates that an automated

approach to the transistor level layout of an FPGA is feasible. The quality of the results

 79

indicates that there is potential for using this tool to aid FPGA architects in the design and

layout of the FPGA tile. However, further investigation needs to be performed in order

to accurately compare the layouts produced by ATL against other software applications

that generate detailed transistor- level layouts for VLSI circuits.

 80

5 Graphical User Interface

The goal of the graphical editor is to provide a visualization of the entire FPGA tile

as designed by ATL. This includes showing the placement of blocks, the routing

between blocks as well as the transistor layout within the blocks. Further requirements

include the ability to edit, save and load routing information.

5.1 GUI Functionality

5.1.1 Inter Cell Placement

The original ATL was already capable of drawing placement. However, the

visualization engine was insufficient and not easily extendable to accommodate the

additional requirements. Therefore, the majority of the block placement visualization

code needed to be rewritten. Blocks are drawn using rectangles and can be distinguished

by the different colours used. Block placement is two-dimensional so visualizing the

block placement is quite straightforward.

5.1.2 Inter Cell Routing

The amount of routing nodes used for the complete routing of an FPGA tile is

very large and visualizing the layout is complex. Further there are multiple layers of

overlapping metal and so a mechanism by which this can be visualized needs to be

defined. The selected implementation uses a different colour for each layer of metal.

Overlapping layers of metal are represented using transparency effects such that higher

 81

layers do not hide the layers beneath them. The connections between routes and the ports

that connect the routing to blocks is also shown.

The visualization is user- interactive. The user can select to display any subset of

layers through keyboard input. Routing nodes and nets can be selected and displayed in

isolation as well – this is useful for identifying a long meandering route that can then be

corrected. An example of this can be seen the figure below.

Figure 25: Inter-cell Routing Showing Selected Nets

 82

An intuitive interface to edit routes by adding and deleting nodes is provided for

the user. This usage is similar to that of other layout tools in industry (for example

MAX). To add to a net, the user simply clicks on the net they want to extend. That net

will become active and a wire on the metal layer that the user clicked will be drawn from

the selected point to where the user next clicks. To change layers, the user simply uses

the keyboard – the vias required for connection the different metal layers are created

automatically by the tool.

In a complex design it is very easy to create erroneous routes and it can be

cumbersome to identify and correct simple errors. ATL attempts to facilitate this process

by supporting the automatic correction of certain erroneous routes. This includes the

automatic removal of loops and extraneous paths. Routes that ATL cannot automatically

resolve are identified to the user by highlighting the erroneous net.

5.1.3 Intra Cell Placement

The intra cell placement is visualized right on top of the inter cell placement.

That is, instead of simply drawing the outline of rectangular blocks using different

colours, the actual transistor layout of each block type is drawn. Drawing the internal

transistor layout and routing for a complete tile can be quite slow because of the immense

quantity of detail. However, when the visible area is smaller, such that only a portion of

the tile is visible, the drawing speed becomes more bearable.

 83

The inter cell placement can be toggled on and off through keyboard input. This feature

is available to the user throughout the CAD flow – from initial placement to the final

routed design.

5.2 Graphical Interface

The old ATL interface has several buttons on the right side of the display. A

selected subset of these buttons and their associated functionalities were replicated in the

new ATL. The buttons that were not ported over were deemed superfluous and more

time was dedicated to adding additional features. This includes the ability to select, add

and delete routing nodes.

Navigating around the ATL interface is quite simple and can be accomplished

through both the keyboard and the mouse. The arrow keys allow the current viewport to

be displaced while the “+” and “-“ keys zoom in and out. This corresponds to the “U”,

“D”, “L”, R”, “Zoom In” and “Zoom Out” buttons. The window feature allows the user

to select an area to zoom into. Zoom fit instantly jumps the user back out to the initial

viewport.

The export to postscript feature was superceded by the ability to take a snapshot of

the display to an image file. Multiple image formats are supported, including PNG, JPG

and GIF.

Figure 26 shows the old and new interface buttons.

 84

Several keyboard inputs are also supported. A summary of the keys recognized

include:

• GUI Keyboard Input Legend:

• A: display all layers

• Z: display no layers

• J: toggle display of internal transistor layout of blocks

• [0-9]: toggle display for layer X

• When in ADD mode:

• d: up a layer

• D: down a layer

Figure 26: The old ATL interface vs. new
OpenGL ATL

 85

5.3 GUI Implementation

The graphical editor is implemented using OpenGL and has been tested under

both Windows and Linux platforms. OpenGL is a mature graphics platform that is

supported on multiple platforms. It features 32-bit RGBA (red-green-blue-alpha) colour,

which enables the visual display of the routing to be more appealing. Further as an

emerging standard many video cards have built- in hardware support for OpenGL which

makes the graphics run faster.

Incorporating the GL Utility Toolkit (GLUT) eliminated the need for two files

from the ATL project, atl_win_graphics.c and atl_x11_graphics.c. Previously, these

were used to provide drawing functionality in Windows and Unix environments,

respectively. A unified file, atl_graphics.c, was added to accomplish drawing in both

Unix and Windows environments. This enhances code readability and maintainability

while keeping cross platform compatibility.

 86

Figure 27: Initial placement views (old vs. new) for “tile_1x4” circuit.

The OpenGL view uses a double buffer system and therefore seems to be faster

when refreshing the screen. In the old ATL program, the redrawing of each individual

block can be seen when the window is being redrawn. Figure 27 shows the initial

placement of the smallest test circuit under both the old and new ATL.

5.3.1 Interface Implementation

The existing export to Postscript button actually re-draws the placement using

Postscript code. Using OpenGL, it is much simpler to export an image file than to

generate Postscript code to represent the display. Hence, the export button was changed

 87

to create an image file instead. Using the BitMapped Graphic Library (BMGlib), the new

ATL interface can export PNG, JPG and TIF files.

In the interim report it was stated that there were problems with multiple

sequential zoom requests. All such problems have been resolved and zoom now

functions as expected under all conditions.

5.3.2 Inter Cell Placement Visualization Implementation

The inter cell placement consists primarily of coloured rectangles. Drawing all

blocks in the cell level netlist is accomplished in O(N) time – loop over all blocks and

draw a rectangle for each block. This was quite simple as GLUT provides primitives for

drawing rectangles.

5.3.3 Routing Visualization Implementation

The inter cell routing consists of an immense number of routing nodes placed

upon a routing grid. Each node on the routing grid can be flagged with the following

properties:

Figure 28: Routing grid flags

 88

Based on these types, each node on the routing grid is divided into a 3x3 grid and

drawn using Table 7 as a reference. This 3x3 table shows the positions of possible

contents inside the node. Using bit-wise comparisons of the current node property and

the defined properties, information can be extracted to indicate exactly which pieces of

the node need to be drawn. For occupied nodes on the routing grid, the centerpiece is

always drawn. Vias and ports are drawn within the centerpiece. Adjacent routing nodes

that form wires are drawn by filling in the appropriate entry as shown in Table 1. For

example, If all of the wires adjacent to the centerpiece are used, the picture resembles a

cross.

Always Empty

TOP_WIRE

Always Empty

LEFT_WIRE

CENTER PIECE
(always drawn)

RIGHT_WIRE

Always Empty

BOTTOM_WIRE

Always Empty

Table 7: Position of metal segments in a routing grid node

Several problems related to the speed of the graphical editor were presented

during the interim report and these have all been rectified. The largest tile data set

available can be drawn in less than a second with all the routing displayed. This is

considerable improvement over the minutes that the initial solution presented in the

interim report required.

 89

Because the number of routing nodes is significantly higher than the number of

the number of blocks, an O(N) algorithm in terms of the number of used routing nodes is

still too slow to be bearable.

The main source of the incredible speed increase is caused by a major code

overhaul to draw nets instead of drawing nodes. This requires relatively complex

preprocessing of the node connectivity based on the flags set on each node to create a

new net-based data structure (DrawNet) storing only the end points of metal wires. This

new data structure is created by reading the routing traceback and creating a list of

endpoints that can be identified by comparing the flags assigned to each node. This data

structure has a second benefit – it reduces the memory usage, as intermediary nodes do

not have to be stored. The memory usage concern was mentioned in the interim report

and was successfully resolved. Figure 29 (identical to Figure 17) shows an example of

what information is stored in the DrawNet data structure for the routing of a 3-pin net.

Because the traceback does not change, computing the endpoints once at the

beginning and caching these coordinates makes drawing the nets orders of magnitude

faster than visiting all visible nodes and querying their properties.

 90

1 2 3 4 5 6 7

8 9 10 11 12 Pin C
13 14

15 16 17 18 19 20 21

22 Pin A
23

24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 Pin B
39

40 41 42

43 44 45 46 47 48 49

Associated Traceback: 23à24à25à32à39àXXà25à26à27à20à13

DrawNet Endpoints list: 23->25, 25->39,26->27,20->13
Figure 29: Drawing procedure Based On Traceback.

The modifications that a user makes to the routing are made in the graphics data

structures. Two data structures are updated upon either a user add or delete command –

an array of routing nodes that stores the properties of each node and the DrawNet

structure. As such, the interface requires the user to add routing nodes to an existing net

– routing nodes that do not belong to any net cannot be added. This simplifies the error

recovery system considerably.

When the user issues a “Validate Route” command the route traceback data

structure is reconstructed based on the graphics structure. This conversion process

includes a simplistic error recovery system that can very quickly identify and remove

some erroneous routes. This error recovery system is very fast and does not involve an

 91

actual call to re-route the entire tile. Instead it traces the route that is displayed to the

user by performing a depth first search starting from the source pin and searching along

connected paths for the destination pins. During the depth first search, loops can be

identified and removed. Further pins that cannot be found are flagged as a fatal error –

the route is disconnected. In the event that a successful conversion is possible from the

graphics structure to the route traceback data structure, the standard route checking

routines are invoked. This verifies the occupancies and connectivity in a more extensive

manner.

5.3.4 Intra Cell Placement Visualization

The internal transistor layout of each block can be quite complex and therefore

drawing all transistors for an entire tile causes considerable slowdown to the graphics.

This is alleviated somewhat by smartly only drawing the visible blocks, therefore in a

zoomed in view the delay is negligible.

As the intra cell placement is presented as a set of rectangles, drawing this data is

quite straightforward. The only minor problem resulted in the fact that the intra cell

placement coordinate system did not match that of the inter cell placement. Because of

these discrepancies in the coordinate systems, some scaling of the internal transistor

layout must be performed. This scaling is done on a per block basis since there is also no

consistency with regards to the coordinate system for the different block types. Figure 30

shows a zoomed in view of the tile with the internal transistor layout revealed. Figure 31

shows the same view but the internal transistor layout is hidden.

 92

Figure 30: Inter-cell Routing With Transistor Level Layout displayed

Figure 31: Inter-cell Routing With Transistor Level Layout hidden

 93

6 Conclusions and Future Work

6.1 Summary and Contributions

Current design flow processes for Field Programmable Gate Array devices require

an extensive amount of manual effort in order to define an electrically legal layout that

satisfies all performance constraints. Due to escalating complexities in modern FPGA

devices, many person-years of development time is required to develop a new

architecture. An additional complication experienced in the early stages of design

process is the inaccuracies in estimating the final performance of FPGA architectures,

since the exact timing numbers can only be extracted after the layout is completed. Since

decisions made at the beginning of the design cycle have a profound impact on the

quality, performance, and routability of the architecture, the development of automated

software tools that assist FPGA architects in quantitatively evaluating high- level

architectural decisions is an essential step in improving the quality of FPGAs. An

additional benefit is that CAD tools, in combination with human intuition and experience,

can accelerate the design cycle for FPGA architectures from several person-years to a

few person-months.

Betz et al. [4] identify three major factors that influence the performance of

FPGA devices:

• The quality of the CAD tools used to map circuits into an FPGA

 94

• The high- level architectural decisions of the FPGA, such as the global routing

architecture, the detailed routing architecture, and the composition of the logic

structures inside the FPGA

• The intrinsic quality of the transistor- level layout of the FPGA

Betz develops a detailed framework for investigating the first two of these three

factors. VPR, Versatile Place-and-Route, contains a high-quality and highly flexible

packer, placer, and router that position and connect the fundamental logic components

that represent a digital design into an FPGA. Having high-quality CAD tools that map

circuits into the FPGA are fundamental in accurately evaluating the effect of high- level

architectural decisions on the overall performance of the architecture. This work points

out that the area and delay information used in the tools to evaluate FPGA performance

are developed using abstract models that estimate the area of the FPGA and delay

between connections within the FPGA. The exact numbers cannot be obtained since a

valid transistor-level layout is not available for these architectures.

Our design project is the extension of a CAD tool that performs the automated

transistor-level design and layout of an FPGA – the unexplored factor that has a

significant influence on the performance of FPGA devices. The ultimate goal of the

CAD tool, ATL, is the creation of a high-performance electrically legal layout for an

FPGA tile defined by a high- level architectural description. Ideally, ATL will generate a

solution that uses a minimum amount of silicon area, has desirable timing characteristics,

 95

and identify the solution in a short period of time. FPGA architects can utilize ATL, in

concert with VPR, to obtain a complete CAD flow for evaluating high- level architectural

decisions on the final performance of an FPGA.

We have added three important modules to ATL that increase the functionality of

the application. First, a set of hand-optimized layouts was developed and functionally

verified using commercial CAD tools. A parser was developed that converts these

layouts into ATL’s data structures and transforms the circuit netlist to reflect the

information about the dimensions of each cell. Next, an inter-cell routing algorithm was

created to define the width, position, and orientation of metal segments that electrically

connect the terminals of the logic design, as specified by the circuit netlist. Finally, we

produced a graphical user interface that is capable of displaying, editing, and saving both

layout and routing information from the two other modules.

ATL is currently the only academic work that focuses on using domain specific

knowledge to develop a transistor- level layout for an FPGA tile. Therefore, the

feasibility of automated solution is an important question tha t our project is attempting to

answer. In this paper, we have demonstrated that an automated tool can achieve

compact, routable layouts for complex tile definitions in a few hours. This result proves

there is potential for using automated tool to assist in the development of modern FPGA

architectures.

 96

6.2 Future Enhancements

Although we have demonstrated the feasibility of an automated solution, there are

many additional considerations that are required to increase the quality and usefulness of

ATL. There are several important components that need to be implemented before this

tool can produce sufficient information for a semiconductor facility to generate a mask.

The output of ATL needs to be converted to the standard mask definition language used

in industry, GDS-II. This task is more complicated than a simple format translator due to

the complex rules associated with the GDS-II standard. However, a considerable benefit

of developing a GDS-II translator for ATL is that the output layout could be analyzed by

commercial simulation and timing analysis applications to (1) validate the correctness

and (2) compare the performance of ATL against alternative CAD tools that perform

transistor-level layout. In order for ATL to generate layouts that can be implemented in

silicon, the router needs to be enhanced to handle design rules involving exact distances

instead of relying on scalable design rules. Additionally, more complex design rules

need to be considered in the routing algorithm in order for the layouts to be implemented

on deep sub-micron VLSI processes.

Several enhancements can be made to the routing module that would reduce the

overall area (and potentially the minimum number of metal layers) required by the router.

Modifications can be made to allow the router to use polysilicon for short connections

and utilize the unused areas in the lower metal layers. Another enhancement to the tool

would be the ability to generate a layout that considers “directed” timing requirements

specified in the architecture file. For example, it is standard practice in recent FPGA

 97

devices to skew the delays of the LUT inputs to increase the performance of the circuits

implemented in FPGAs.

An additional extension to this project would be the ability to allow the floor

planning of an entire FPGA based on various configurations of primitive tiles. This

module would be responsible handling user specifications and the issues involved in the

integration of various tile structures. This feature would allow ATL and its deriva tives to

be one step closer to generate the transistor- level layouts for complete FPGA

architectures and produce legal mask definitions that are ready for the next phase in the

fabrication process.

These examples of potential enhancements to the ATL application are a sample of

the rich possibilities that exist in the field of automated transistor- level layout for FPGA

devices and shed light on the potential that ATL will have on further research. This

technology has the potential to have a tremendous impact on both the current and future

design processes of FPGA devices. This work has taken an important step to the eventual

realization of this technology.

 98

7 References

[1] R. Hitchcock, G. Smith, and D. Cheng, “Timing Analysis of Computer-Hardware,” IBM
Journal of Research and Development, Jan. 1983, pp. 100 – 105.

[2] K. Padalia, “Automated Transistor-Level Design and Layout Placement of FPGA Logic and
Routing from an Architectural Specification”, Undergraduate Thesis, University of Toronto,
2001.

[3] V. Betz, “Architecture and CAD for Speed and Area Optimization of FPGAs,” Ph. D. Thesis,
University of Toronto, 1998.

[4] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs,
Kluwer Academic Publishers, 1999.

[5] C. J. Alpert et al., “Buffered Steiner Trees For Difficult Instances,” International Symposium
on Physical Design, 2001, pp. 4-9.

[6] Joobbani, Rostam, An Artificial Intelligence Approach to VLSI Routing. Hingham,
Massachusetts: Kluwer Academic Publishers, 1986.

[7] V. Betz, “VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs”, [Online
demo application], [Cited Jan. 9, 2002], Available HTTP:
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html. Last checked: December 2001.

[8] MOSIS Corporation, “MOSIS Scalable CMOS (SCMOS) Design Rules,” [Online document],
[Cited Jan. 9, 2002], Available HTTP:
http://www.mosis.org/Technical/Designrules/scmos/scmos-main.html

[9] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns, “Placement and Routing Tools for the
Triptych FPGA,” IEEE Trans. On VLSI, Dec. 1995, pp. 473-482.

[10] Rubin, Steven M., Computer Aids for VLSI Design. Reading, Massachusetts: Addison-
Wesley Publishing Company, 1987.

[11] Preas, Bryan T., and Michael J. Lorenzetti, Physical Design Automation of VLSI Systems.
Menlo Park, CA: Benjamin/Cummings Publishing Company, 1988.

[12] C. Y. Lee, “An Algorithm for Path Connections and its Applications,” IRE Trans. Electron.
Comput., Vol. EC=10, 1961, pp. 346-365.

[13] E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerical Mathematics,
Vol. 1, 1959, pp. 269-271.

[14] F. Rubin, “The Lee Path Connection Algorithm,” IEEE Trans. Computers , Sept. 1974, pp.
907-914.

[15] R. Nair, “A Simple Yet Effective Technique for Global Wiring,” IEEE Trans. On CAD,
March 1987, pp. 165-172.

[16] Weste, Neil H. E., and Kamran Eshragian, Principles of CMOS VLSI Design, 1st Ed.,
Reading, MA: Addison-Wesley, 1985.

[17] Electronic Industries Alliance, “Electronic Data Interchange Format,” [Online document],
[Cited April 11, 2002], Available HTTP: http://www.edif.org/news.html

[18] Altera Corporation, “Altera Corporation Glossary (July 2001),” [Online document], [Cited
April 11, 2002], Available HTTP: http://www.altera.com/literature/glossary/glossary.pdf

[19] M. Kaufmann and K. Mehlhorn, “Routing Problems in Grid Graphs,” Paths, Flows, and
VLSI-Layout, 1990, pp. 165-184.

 99

APPENDIX A: Cell Schematic and Layout Library

The following table lists the major cell types used within the FPGA architectures

considered in this project complete with a schematic representation and a sample layout .

Cell
Name

Schematic Representation Layout Representation

SRAM

Buffer

Flip-
Flop

 100

Look-
up

Table

Table 8: Cell schematics and layouts

