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Executive Summary 

Field-Programmable Gate Arrays (FPGAs) are becoming more prevalent in 

digital systems and are used to implement a wide range of applications – from 

telecommunications switching systems to wireless interfaces.  This project investigates 

the feasibility of a tool to automate the process of producing the transistor- level layout of 

an FPGA.  This will reduce the design cycle time while maintaining a comparable quality 

to layouts fully optimized by hand.  We will extend an existing tool, Automated 

Transistor Layout (ATL), by improving its placement algorithm, designing a router, and 

developing a Graphical User Interface to visualize the proposed enhancements.  This 

project takes ATL from cell placements without routing between them and defines the 

inter-cell routing and the intra-cell layout.  Our work coincides with another project is 

further improving the cell placement algorithms. 
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Team Members’ Contributions 
 

Table 1 contains a listing of the project milestones that were defined at the 

beginning of our project.  The table provides a short description of each task, identifies 

the primary group member responsible for completing the module, and our initial 

estimates for the duration of each milestone.  

Task Duration Task Lead 
Background Research September 4 – September 30 ALL 

Technical Proposal September 20 – September 30 ALL 

Routing Infrastructure (Inter-cell) October 1 – December 31 Mark 

Graphical Infrastructure October 1 – December 31 Chris  

Support For Hand Generated Placement 
(Intra-cell) 

October 1 – December 31 Josh 

Router Algorithm (Inter-cell) January 1 – March 31 Mark 

Placer & Router Feedback Loop January 1 – January 31 Josh 

Graphical Routing Editor January 1 – March 31 Chris  

Auto-Generated Placement (Intra-cell) February 1 – March 31 Josh 

Table 1: Original Milestones for Design Project 

 

Over the course of the project’s lifecycle, both the milestones and their durations 

were updated based on inaccurate estimates in the amount of effort and for unexpected 

difficulties.  Table 2 lists the updated milestone schedule and contains information as to 

the final status for each of the milestones at the conclusion of the project.  We have 

completed all of our original milestones, except for a module that automatically generates 

the intra-cell layout.  The primary reason for abandoning this milestone was that 

preliminary estimates for the performance of an automated intra-cell layout engine would 

be significantly inferior to a hand-generated solution.  Additionally, we have 
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underestimated the total time taken to fulfill the non-technical requirements for the design 

project (i.e. presentations & reports). 

 

Task Duration Task 
Lead 

Status 

Background Research September 4 – September 30 ALL þ 

Technical Proposal September 20 – September 30 ALL þ 

Inter-cell Routing Infrastructure (software)  October 1 – December 31 Mark þ 

Graphical Infrastructure (software) October 1 – December 31 Chris  þ 

Hand Development of Intra-cell Layouts 
(hardware schematics) October 1 – December 31 Josh þ 

Interim Reports January 1 – January 10 ALL þ 
Placer & Router Feedback Loop (software)  January 1 – January 15 Mark þ 

Inter-cell Router Algorithm Improvements 
(software) January 16 – March 31 Mark þ 

Graphical Routing Editor (software) January 1 – March 31 Chris  þ 

CAD Development of Intra-cell Layout 
(hardware schematics & software) 

February 1 – March 31 Josh þ 

Integration & Test March 1 – April 4 ALL þ 
Poster Presentation March 14 – March 21 ALL þ 
Oral Presentation  March 21 – April 4 ALL þ 
Final Tuning of Inter-cell Router 
(experimentation) 

April 1 –  April 12 Mark þ 

Final Report April 1 –  April 12 ALL þ 

Table 2: Final Milestones for Design Project 

 
As shown in the table, most of the technical components were software-oriented.  

Chris and Mark exclusively worked on developing software for our CAD tool, while Josh 

designed several hardware schematics and wrote a software module to transfer the 

schematic representation into the CAD tool’s internal data structures. 
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The initial partitioning of the final report write-up was based on the technical 

components that each individual worked on over the course of the year.  The remaining 

sections were allocated evenly between the three of us, based on the comments that we 

received in our interim reports.  Table 3 lists the individual responsible for each section 

of the final report write-up: 

Report Section Author 
Report Outline Mark Bourgeault 

Executive Summary Josh Slavkin 

Team Members’ Contributions Mark Bourgeault 

Introduction Josh Slavkin 

Background Work Chris Sun 

Intra-cell Layout Josh Slavkin 

Inter-cell Routing Mark Bourgeault 

Graphical User Interface Chris Sun 

Conclusions & Future Work Mark Bourgeault 

Final Proofing Josh Slavkin 

Table 3: Division of Final Report Write-up Responsibilities 
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1 Introduction 

Field-Programmable Gate Arrays (FPGAs) are becoming more prevalent in 

digital systems and have a wide range of applications, ranging from telecommunications 

switching systems to wireless interfaces.  Current ly, the transistor-level design and layout 

of an FPGA is a manual process, with the assistance of Computer Sided Design (CAD) 

tools, and takes many person-years of effort.  This project enhances an existing tool that 

automates the process of producing the transistor- level design of an FPGA in order to 

reduce the design cycle time for an FPGA layout to days instead of several months. 

 

One key question our team attempts to answer is how well an automated solution 

will compare to standard industry results produced by a team of designers.  Specifically, 

we compare the area needed to implement the design in silicon.  If our tool produces 

reasonable results, then it could be used to assist FPGA architects in refining the 

underlying architecture of FPGAs to produce future devices more rapidly. 

 

Therefore, the main goal of our project is to reduce the length of design time for 

the development of FPGA layouts while maintaining the quality of results of achieved by 

current FPGA architects.  

 

1.1 FPGA Layout & Design Considerations 

An FPGA is an integrated circuit that allows routing paths to be reconfigured after 

fabrication.  Like any integrated circuit, for an FPGA to be created the complete 
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transistor-level structure and interconnections must be defined; this is the design phase of 

creating an FPGA.  The main consideration at this stage is the functional correctness of 

the circuit or sub-circuits.  Additional considerations include estimating the transistor 

sizes to provide some speed and timing optimizations.  Once the design is complete, the 

circuit must be physically laid out so a mask can be created to fabricate the actual silicon 

implementation of the FPGA.  Figure 1 shows the high- level view of the FPGA creation 

process. 

Transistor-
level 

Design of 
FPGA 

Layout 
of FPGA 

Functional 
Description 

of FPGA 

Fabrication 
of FPGA 

Final FPGA 

 

Figure 1: FPGA creation process overview 

Determining the exact locations of the silicon representation of each transistor and 

piece of metal interconnect is the layout phase of creating an FPGA.  The main 

consideration at this stage of development is producing a layout that functionally matches 

the design.  Additionally, the layout created should produce good yields from fabrication.  

Design rules specify the geometric properties the layout should have to maximize the 

yield for an integrated circuit from a given fabrication process.  Thus, conforming to the 

design rules specified for a fabrication process is essential to produce sufficient quantities 

of the FPGA to make the expense of fabrication worthwhile. 

 

Matching the functionality of the design and meeting the design rules are not the 

only considerations at this stage.  Additional considerations include minimizing area and 

maximizing timing performance.  Because these two considerations can be at odds with 
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each other, a balance between the two must be reached.  However, as long as minimum 

timing requirements are met, area considerations usually take precedence.. 

 

Our project deals primarily with the layout portion of the FPGA creation process.  

The main considerations while attempting to first minimize the area required to layout an 

FPGA and then optimize the timing performance. 

 

1.2 Motivation 

FPGAs are increasingly important components in the design of digital systems.  

But before any digital system can be implemented upon an FPGA, the layout and design 

of the FPGA must be defined at the transistor- level.  The process of FPGA design and 

layout is a task that currently requires several person-years worth of work.  Existing tools 

can assist in this process; VPR_LAYOUT converts architecture description files into cell-

level and transistor- level netlists for FPGA tile and the previous generation of ATL 

addresses the initial placement of the cells.  However, the process is still largely manual.  

This generation of ATL further automates the layout and design process.  The three main 

benefits our tool attempts to provide to FPGA designers are: 

• Reduction in design cycle time 

• Architecture exploration experiments 

• Preliminary quality assessments of architectures 
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1.3 Approach 

Our group defined three main tasks to perform in the attempt to achieve our main 

goal.  They are: 

• The creation of an inter-cell routing algorithm that selects the width, layer, 

and position of each metal component that is required to implement a portion 

of an FPGA on an integrated circuit.   

• The definition of a compact layout for each type of cell that appears on an 

FPGA.  A “cell” is a group of transistors that performs a specific digital logic 

function. 

• The development of a graphical user interface that can visualize the efforts of 

the two previous tasks and accept user input to modify the final layout 

selected by the routing engine. 

 

Our design project is an extension of ATL [2], a tool that performs the Automated 

Transistor Layout for a representation of an FPGA segment, hereafter referred to as an 

FPGA “tile”.  This software application contains the foundation for achieving the goal of 

automating the development of FPGA layouts.  The previous version of ATL takes the 

required connectivity of the FPGA tile and then positions the cells such that the 

anticipated number of wires required to electrically connect the various terminals of the 

FPGA’s transistors is minimized.  As already mentioned, our design project will augment 

ATL with an “intra-cell layout mechanism” and an “inter-cell routing module”.  These 

modules will transform ATL into a tool that is closer to creating a viable electrical 

representation of the FPGA tile so that the output of ATL can be used to produce a 
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functionally correct integrated circuit that represents the architectural description of the 

tile.  Figure 2contains a pictorial summary of the process tasks that must occur prior to 

ATL’s execution.  These steps include the definition of the architecture and creation of 

the netlist for the FPGA tile and the layouts for each cell.  Within the figure, the 

rectangles represent a process or task to be performed and trapezoids represent the 

resulting data.  Processes that are not greyed out are those we implemented.  The 

computer/person icon reflects the level of computerized tools associated with the process. 

 

Figure 2: Pre-ATL process flow 

Figure 3 is a block diagram of the data flow within ATL.  In this figure, rectangles 

represent functional modules with ATL; those not greyed out are modules our group 

implemented.  The trapezoids represent the input and output data files. 



 6 

 

Figure 3: Internal ATL control flow 

 

1.4 Report Organization 

The next section of this report provides some background information on the basics 

of FPGA architecture, the basic Computer Aided Design flow for VLSI designs and an 

overview of the previous work necessary for this project to be successful. 

 

Sections 3 through 5 provide details about the overall methodology used within the 

ATL flow.  Section 3 outlines the rationale and methodology used in the intra-cell layout 

process that takes place outside of ATL.  Section 4 presents the details of the inter-cell 

routing to connect the cells.  Section 5 provides details on the Graphical User Interface 

that was created to assist in the use of ATL  
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Section 6 reports on the conclusions drawn from this work and presents some 

potential future work that may extend this project.  The final section summarizes the 

work done in this project and draws conclusion this work can provide. 

 

Appendix A contains the schematic and layout library of the cells used in the 

FPGA architectures considered. 
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2 Background Work 

2.1 FPGA structure 

The structure of an FPGA can be viewed from 2 perspectives, the user-design view 

and the Integrated Circuit (IC) design view.  The IC design view looks at the chip at the 

transistor level while the user-design view is a higher- level, abstraction of the chip.  In 

both cases, common terminology is used.  For this document, some terminology is now 

presented. 

 

Term Definition/Use 

Point Transistor port, cell port or wire connection.  Can be abstracted 

from the cell level to the transistor level. 

Netlist 

Connection 

Two points within a design which are electrically connected for 

the design to operate 

Net Set of netlist connections with a shared point (source) 

Netlist A list of nets that define the connectivity of a design 

Interconnect Metal connecting 2 points 

 

In the user-design view of an FPGA, the overall structure is primarily divided into 

Logic Blocks and Routing.  A logic block consists of a number of Look-Up Tables 

(LUT), usually 8-10.  Each LUT implements a 3-4 input logic function.  The overall 

structure is like a map, where the Logic Array Blocks (LABs) are like cities, the LUTs 



 9 

are like buildings within the cities and the routing is like the highways connecting them.  

When the correct connections between the LUTs are made, the chip can implement 

virtually any function.  Setting certain switches program the connections, such that the 

connections between the LUTs exist.  Unlike determining the directions on a map, the 

path between two points cannot share the same interconnect.   

 

Cores, or specialized function blocks, can be inserted into an FPGA to provide 

additional functionality.  Some of these functions may include, Digital Signal Processing 

(DSP), memory, processor cores, Phase-Locked Loops (PLLs) or Clock-Data Recovery 

(CDR) circuits.  Figure 4 depicts the high level view of an FPGA. 

 

Figure 4: High level view of FPGA 

At the user-design level, the positions of the blocks and routing are fixed.  During 

Integrated Circuit (IC) design, each block location is undetermined and the routing paths 
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are not defined.  The main task of IC design is to determine the optimal positions of the 

blocks and to connect them with routing.  In addition to fixing the location of each block 

and the routing between them, the details of each block must also be developed.  Once 

basic architecture parameters are defined (e.g. the number of LUTs to a LAB, the number 

of inputs to a LUT, the number of horizontal and vertical wires, the connectivity patterns, 

etc.), the optimization of placement is an arduous task requiring significant effort by 

many engineers.  Most of this work is done manually using Computer Aided Design 

(CAD) tools.  Any change in the architecture parameters requires a complete reworking 

of the entire design, thus making experimentation with different architectures expensive 

in terms of resources. 

 

Since the task of laying out a complete FGPA is a very large problem, tools, like 

Versatile Place and Route (VPR) and VPR-LAYOUT, allow architectural engineers to 

specify a sub-section of the FPGA, a FPGA tile, which are building blocks of the overall 

chip design.  Once basic tiles have been defined, VPR replicates them appropriately to 

achieve the desired FPGA.  This project focuses on automating the layout within each 

tile.   

 

Automated Transistor Layout (ATL) is the first step in automating the tile layout 

process.  ATL places the components, or cells, within each tile.  Our project will define 

the transistor level layout within each cell and provide the routing between them. 

 



 11 

2.2 CAD in FPGA 

Implementing a circuit in an FPGA is highly complex due to the shear number of 

circuit elements involved.  CAD tools exist to assist designers in this task.  An FPGA 

user will typically provide a high- level circuit specification using a hardware description 

language (HDL) or schematic entry.  Then CAD programs will convert this abstraction of 

the circuit into a detailed programming file that dictates the circuit map in the FPGA.  

This procedure is normally divided into three sequential sub-processes (synthesis, 

placement and routing) to keep the complexity tractable as shown in Figure 5. VPR is a 

CAD tool that implements placement and routing for FPGAs.  It provides the transition 

of data flow from high- level architecture description files, in order to generate the 

necessary detailed programming file on which ATL operates.  This section provides a 

description for each sub-processes and how VPR tackles each process. 

 

Syn thes i s  t o  l og i c  b locks

H igh  Leve l  A rch i t ec tu re  Desc r i p t i on

P l a c e  l o g i c  b l o c k s  i n  F P G A

R o u t e  c o n n e c t i o n s  b e t w e e n  l o g i c  b l o c k s

F P G A  p r o g r a m m i n g  f i l e
 

Figure 5 FPGA CAD flow 
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2.2.1 Synthesis 

Synthesis is the automatic conversion of a hardware description language model 

into a netlist of logic blocks, governed by a set of design criteria, such as area and speed.  

Synthesis first converts logic- level HDL into basic gates, and then undergoes the logic 

synthesis process.  Logic synthesis involves performing logic optimization to reduce area 

and/or delay, mapping the optimized netlist of basic gates to look-up tables (LUT) and 

packing the LUTs into logic blocks.   

 

The first two stages of the logic synthesis have been extensively studied.  Good 

algorithms and tools are publicly available.  The problem raised in the last stage, Logic 

Block Packing, is a form of clustering.  Clustering and partitioning are inherently the 

same problem; both divide a netlist into smaller pieces.  While partitioning is the process 

of dividing a circuit into only a few pieces at a time, clustering breaks the circuit down 

into many small pieces in one step, as opposed to recursively partitioning into a few 

partitions in each step.  Partitioning is also known as a top-down approach and clustering 

as a bottom-up approach.  Clustering has been studied at length.  However, many 

methods are not capable of constraining simultaneously on the maximum number of 

inputs, the number of clocks and the number of LUTs and registers in a logic block, 

which are key in logic block packing.   

 

VPR claims to be the first publication work that describes algorithms targeting at 

“cluster-based” logic blocks.  Two packing approaches are presented: a basic algorithm 

named VPack and a timing-driven algorithm named T-VPack.  The complexity of VPack 
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is O(kmax*K*n), where kmax is the maximum number of terminals on a net, K is the 

number of inputs to each LUT and n is the number of LUT’s plus the number of registers 

in the circuit.  The author also claims that T-VPack outperforms VPack in terms of both 

circuit speed and routing area required. 

 

2.2.2 Placement  

Placement is the task of placing modules adjacent to each other to minimize area 

or cycle time.  Two main algorithms that have been developed are min-cut (partitioning-

based) and simulated annealing.  The Min-cut algorithm is a recursive procedure that 

partitions the group of blocks to be placed into two subgroups with the minimum number 

of signal interconnections, until the leaf cells are reached.  In simulated annealing, the 

movement of modules is likened to thermal annealing.  Modules are initially placed 

randomly, and the “temperature” of the layout is estimated according to measurements 

such as area and timing.  As the layout “cools”, the overall rating of the layout improves.  

For each proposed movement, the rating is calculated.  A proposed movement can 

proceed only if the resulted rating is improved. 

 

VPR incorporates the simulated annealing algorithm for the placement, because it 

is much easier to add new optimization goals or constraints to a placer based on such an 

algorithm.  The algorithm incorporates three enhancements over conventional placement 

algorithms that use simulated-annealing approach: a new annealing schedule that is 

adaptive to the current layout, a linear congestion cost function that provides better 
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results that all other alternatives in a reasonable computation time, and an incremental net 

bounding box update method that reduces placement CPU time by a factor of over 5. 

 

2.2.3 Routing 

After each logic block in a circuit has been assigned a location, a router is needed 

to determine how to connect all the logic block input and output pins required by the 

circuit.  Routing a connection corresponds to finding a path between the logic blocks.  

The path is preferred to be as short as possible to comply with the limited number of 

wires in a FPGA.  A route for a net should not take up resources that another net needs. 

 

Modern routers study net interactions and perform routing in parallel.  The overall 

procedure divides the routing area into smaller pieces and uses a global router to assign 

each net to a few routing areas.  A detailed router will then proceed to place the actual 

wires. 

 

VPR performs either global routing or combined global-detail routing for FPGAs 

and incorporates a routability-driven and a timing-driven router.  The timing-driven 

router also uses routability as a consideration. While many path finding algorithms are 

available, both routers were developed based on a Pathfinder negotiated congestion 

algorithm.  The Pathfinder algorithm produces excellent results due to two innovations:  

allowing overuse of routing resources, and allowing congestion to gradually be resolved 

and timing to be directly optimized.  
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The routability-driven router outperforms all other routers in terms of routing 

circuits with a minimum amount of routing.  However, the routers cannot be compared on 

the basis of timing due to lack of standard benchmarks in this area.  

 

2.3 Previous works 

VPR has become quite renowned in industry and widely referenced in many papers 

relating to FPGA research.  This acclaim is due to relative performance of the algorithms 

presented compared to the performance of similar software packages.  Our project is part 

of an on-going research project at the University of Toronto. We extend an existing CAD 

placement tool, ATL, which has its basis in VPR.   

 

2.3.1 Architecture Generation 

The versatility of VPR lies in its ability to place and route almost any FPGA 

architecture.  This is possible because VPR does not make any inherent assumptions 

about the FPGA architecture and instead provides a mechanism for users of VPR to 

specify FPGA architectures.  Because of the complexity of the architecture of an FPGA, a 

language for expressing different architectures to the software is defined.  This standard 

language is able to capture the most essential design features of a vast class of FPGA 

architectures.  The thesis notes that by enforcing certain architectural constraints, an 

architect only needs to define a subset of an FPGA – an FPGA “tile” – to specify 

variations.  By taking advantage of the ability to create an FPGA from a small set of tiles, 

VPR produces a flexible and efficient connectivity structure for FPGA architectures.  
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Using VPR’s infrastructure and the succinct architecture representation format, it is 

possible to design and evaluate a wide selection of viable FPGA devices.  The term 

viable implies that the device is capable of implementing real-world designs. 

 

The specification provided in the architecture file also contains pertinent 

information about the fundamental electrical parameters that characterize the wires and 

switches inside an FPGA.  VPR uses this information to compute area and delay 

estimates of the FPGA if it were manufactured by a semiconductor fabrication facility.  

The software then uses the delay estimates and tile connectivity structures to generate an 

internal representation of the entire FPGA.  This data structure, known as the routing 

resource graph (RR graph), is a weighted, directed graph that correlates to the input 

architectural description. 

 

The RR graph implicitly contains the transistor- level structure of the FPGA.  For 

example, nodes in the graph classified as “logic cell sources” can represent the look-up 

table structure outlined in Figure 6.   
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Figure 6: Lookup Table Schematic 

 

As illustrated in Figure 6, the logic cell source not only represents transistors, but 

additional logical transistor groupings such as static RAM cells, buffers, and 

multiplexers.  VPR supports architectural parameters that affect the transistor- level 

structure of the lookup-table, allowing users to vary the physical implementation of an 

FPGA’s fundamental digital logic components by changing a small number of 

parameters.  Other parameters supported by VPR can vary the number of routing wires in 

a channel and the amount of connectivity between the transistors and the routing fabric. 

 

To evaluate the performance of a given architecture, the CAD tools in VPR use 

approximate area and delay information for an anticipated physical layout of the FPGA.  
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These estimates are based on abstract models that characterize an FPGA’s electrical 

components.  Under ideal conditions, one would produce a complete layout for each 

FPGA architecture of interest to obtain precise area measurements and accurate delay 

values [4].  This statement represents one of the primary goals for our project.   

 

2.3.2 Netlist Generation 

VPR_LAYOUT is a software program that is used by VPR to generate two 

equivalent representations of an FPGA tile using an architectural description as input.  

VPR_LAYOUT creates these representations by extracting the transistor- level 

information embedded in VPR’s routing resource graph into two different file formats.  

The overall flow of VPR_LAYOUT is depicted in the figure below.  As depicted, 

VPR_LAYOUT is a direct extension to VPR. 
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Figure 7: Overall Flow of VPR_LAYOUT 

One file VPR _LAYOUT produces is the transistor-level netlist.  This netlist 

captures the structure of all transistors that form a single FPGA tile.  An FPGA, like any 

other VLSI system, can be decomposed into many interconnected digital logic elements 

such as static RAM (SRAM), lookup tables (LUT), and multiplexers (MUX).  Each 

digital logic component can be created by a set of transistors.  Combining these details, 

we state that the transistor- level netlist contains the most fundamental information about 

the functionality of an FPGA tile.  It is the structural relationship of the transistors that 

defines the behaviour of an FPGA or any other digital device.  The transistor-level netlist 

is needed by one module in our project, intra-cell layout, to generate the compact layout 

for each cell. 
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In an FPGA, connections between transistors are not limited to a single tileable 

region.  VPR_LAYOUT represents connections at the tile boundary by an abstract entity 

called a “port”.  Therefore, in the context of VPR_LAYOUT, an FPGA tile consists of a 

set of transistors and ports that have a specific connectivity pattern.  In addition to the 

connectivity information between transistors and ports, the transistor- level netlist 

contains tileability constraint data for the ports.  The concept that an FPGA can be built 

using a small number of “tiles” replicated in a grid- like fashion implies that there are 

restrictions in positioning ports on the sides of a tile.  These constraints are enforced by 

VPR’s architectural generator and inferred from its routing resource graph.  The netlist 

contains restrictions for a port’s side and constraints that enforce two ports to be 

positioned directly opposite each other on the tile’s perimeter.  Figure 8 shows an 

example where two ports have fixed sides and a coupling constraint between them.  
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Figure 8: Port aligned for tileability [2] 

The second equivalent representation that VPR_LAYOUT produces of an FPGA 

tile is the cell level netlist.  This type of netlist groups all of the transistors into logical 

“block types” that directly correspond to the types of digital logic elements used to 

construct an FPGA tile.  Each instance of a digital logic element is known as a “cell”.  

The abstract concept of a cell is useful for dividing the problem of producing a high 

quality electrical layout into two sub-problems.   

The first sub-problem is the creation of an effective layout of the transistors 

within a cell.  The second sub-problem is the implementation of an algorithm that 

produces a layout of the cells within an FPGA tile and defines legal routing connections 

between them.  This was the motivation of the automated CAD layout tool, ATL, which 

is the basis of our project.  Our project interprets the cell level netlist for requirement 

parameters needed for the next stage, routing.   
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2.3.3 Placement 

The CAD tool created in [2] performs the automatic layout placement of the netlists 

generated by VPR_LAYOUT.  This tool, ATL (Automatic Tile Layout), uses the 

information in the netlists to estimate the physical size of the tile and produce an initial 

solution to the placement problem.  A simulated annealing algorithm, based on the 

implementation in [4], is the core of the placement engine for ATL.  One of the most 

important factors in simulated annealing algorithms is the cost function; this function is 

used to score the benefits of each placement and to decide whether a proposed 

arrangement is accepted or rejected.  The cost function used by ATL tries to minimize the 

estimated total wire length required to make the connections specified in the cell level 

netlist.   

 

Our project is an extension on ATL to provide an automated CAD tool for the 

complete tile layout process.  ATL provides the crucial cell layout information required 

by the inter-cell router.  Figure 2 (page 5) and Figure 3 (page 6) show the modified ATL 

design flow.   
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3 Intra-cell Layout 

The intra-cell layout process takes the cell descriptions used in the Architecture 

Description and defines the locations of the transistors and routing required to implement 

each cell.  Although an FPGA tile may have many hundreds of cells, there are only a 

handful of distinct cell types.  Within the architectures investigated for the FPGA tile 

there are five main types of cells.  They are: 

• SRAM 

• Look-up Table 

• Buffer 

• Multiplexer 

• Flip-flop 

These cells, when interconnected in the cell- level netlist, fully defining the functionality 

of the FPGA tile.  This section of this report will provide a sample schematic and layout 

for the SRAM cell.  The complete cell library of schematics and layout is found in 

Appendix A.. 

 

The original version of ATL already operated on cell- level netlists, with estimated 

sizes and port locations, to find good placements.  Defining the actual layout of the cells 

prior to the inter-cell placement should yield better placements and lead to a better routed 

tile. 
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3.1 Layout Process 

The overall intra-cell layout process involves defining a schematic for each cell type 

at the transistor level, verifying the functionality of the cell, defining a compact layout 

while conforming to design rules.  The final layouts are read into ATL to update the cell-

level netlists used in the inter-cell placer to improve upon the previous estimates. 

 

3.1.1 Schematic Entry 

In order to guarantee that the final layout for a given cell will provide the intended 

functionality, a digital representation of the cell needs to be created.  Creating a 

transistor-level representation of the cell and simulating its performance confirms that the 

representation implements the intended functionality of the cell.  Any tool that creates a 

netlist suitable for gate- level simulation is appropriate at this stage.  Using SUE provides 

this functionality.  In addition, SUE is integrated tightly with MAX, a layout CAD tool, 

and can provide verification that the layout matches the functionality of the schematic.  

Figure 9 is the schematic representation of the SRAM cell. 

 
Figure 9: Schematic of an SRAM cell 

Once the necessary cells have been created and verified, the actual layout process 

can begin. 
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3.1.2 Manual Layout 

Performing manual layouts of the cells allows the FPGA architect to bring their 

experience to the design process and optimize each cell for both area and speed.  Because 

each cell is independent, every cell can be optimized without worrying about affecting 

neighboring cells.  During the manual layout process, certain constraints must be met.  

First, the cell must provide the desired functionality.  Second, the layout must use no 

more than two layers of metal.  This constraint allows 2 layers of metal within the cells, 4 

layers of metal dedicated to the routing between the cells and 2 additional layers reserved 

for power, ground and clock nets.  Third, the layout must meet the design rules for the 

process within the cell.  Finally, the cells must allow abutment of cells without causing 

design rule violations. 

 

Using the third party utility MAX, the custom layouts for each of the cell type 

was created.  By using this CAD tools and the previously created schematics, the layout 

can be matched to the previously verified circuit representation of the cell.  In addition, 

this CAD tool, like many others, provides design-rule checking thus increasing the 

possibility of a high fabrication yield.  Figure 10 is the pictorial representation of the 

SRAM cell with MAX.  This layout has no design rule errors and fully implements the 

functionality of the SRAM cell.  Further work on this cell can further optimize the layout 

area required to realize the cell. 
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Figure 10: Layout of SRAM cell 

The layout for any cell can be extracted into a SPICE netlist and simulations can 

be performed upon this netlist to ensure the timing characteristics of the cell are inline 

line with the timing requirements.  This information could, in future extensions of this 

project, be used to make timing estimates of the tile. 

 

Performing manual layout within a project that is designed to automate the layout 

and design process might seem to negate the benefits of automation.  However, the 

limited number of distinct cell types within a tile means the number of manual tasks is 

small. 

 

3.1.3 Layout Parser 

The final layouts for each cell produced through manual layout must be imported 

into ATL.  The layout parser acts as the entry point into ATL.  Each cell layout is 
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translated into the internal intra-cell layout structure, l_cells.  The implementation of the 

intra-cell layout structure in ATL is a simple data structure that uses straightforward 

linked- lists of structures in C.  The main data structure, l_cell, contains cell identifier, the 

dimensions of the cell, a list of ports with locations relative to the lower left corner of the 

cell, and the internal structure of the cell.  The data structures for the ports, l_port, and 

the internal structure of the cell, l_intNode are separate C structures within the l_cell.  

The graphical interface requires all the information contained within the l_cell to 

accurately draw the internal representations of the cell.  The inter-cell placer and router 

require only the cell size and port locations as both treat the cells as black boxes. 

 

To allow for easy expansion of cell types, there is a two- level file structure.  The first 

level file is a cell list file.  This file contains the filenames of each individual cell layout 

files to be included, the second level file.  In the original implementation, the second tier 

of files were completely hand generate representations of the cell.  In the final 

implementation of the layout parser, these files are the MAX layout files.  Although the 

support still exists for the hand-generated layout files, the verification and validation of 

the cells created this way is not guaranteed in the process flow. 

 

The layout parser provides more than simply reading a data file.  The units of 

measure in MAX files are specified in microns and use specific technology processes.  

For example, layouts can be created in 0.25µm or 0.18µm process design rules.  ATL 

expects layouts to be created under scalable CMOS design rules.  The basic unit of 

measure in ATL is λ-based; a conversion between the two scales must be performed. 
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The final function of the layout parser is to convert the original cell- level netlist 

representation of the FPGA tile into one that replaces the estimated cell areas and port 

positions with those determined through the layout process.  Since the inter-cell placer 

treats the cell as a simple block with dimensions and port locations, the newly sized cells 

can be interchanged with the original without affecting the placement algorithms.  This 

also means that a mixture of estimated and actual cell information can be used during the 

development phase. 

 

3.2 Inter-cell Placement 

Inter-cell placement module determines the locations of each instance of the cells 

within the tile.  ATL’s placement routine uses the cell- level netlist representation of the 

FPGA tile to determine the cell types and connectivity within the cell.  Cell dimensions 

and port locations are determined by the Intra-cell layout process and provided via the 

Layout Parser.  A simulated annealing algorithm gradually improves cell placement while 

minimizes the expected wire lengths and wire congestion.  The end result of the Inter-cell 

Placer is a placed cell- level netlist.  The placed cell netlist defines not only the 

connectivity of the cells within the tile but also the orientation and position of each cell 

within the tile.  The placed cell- level netlist is the starting point for the Inter-Cell Router, 

which has only to add the metal connecting the ports of the cells. 
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4 Inter-cell Routing 

Ultimately, a VLSI layout is physically unrealizable unless an electrically legal 

path exists for each logical connection specified in the circuit netlist.  The purpose of the 

router is to define the dimensions, position, and orientation of many metal segments that 

collectively connect up the logic design, while meeting the constraints imposed by the 

process design rules.   

 

This section will describe how the inter-cell routing module of ATL works.  The 

“inter-cell” qualifier indicates that this module only considers connections that involve 

different cells.  The intra-cell layout module is responsible for defining the connections 

that are localized within a single cell.  We begin by describing the goals and constraints 

placed on the routing algorithm and the high- level design decisions that were made at the 

onset of the project that balance these considerations.  We then explain how the silicon 

area available for inter-cell routing is internally represented and why the representation is 

both valid and well suited to software routing algorithms that we created.  Next, we 

describe the implementation details of a routability-driven router that was developed to 

solve the inter-cell routing problem.  Finally, we present qualitative and quantitative 

evidence that the router successfully generates a high-quality, electrically legal routing 

for all the circuits available in our test suite.   
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4.1 Position in CAD Flow 

Figure 11 illustrates where the ATL router fits into the CAD flow.  The router’s 

input is a netlist that describes the position of each cell within the FPGA tile and the 

position of each port on the perimeter.  This information comes from the output of the 

ATL placer and will be referred to as the “netlist placement”.  The netlist placement is 

either read in from an output file or is generated by invoking the ATL placer.  The ATL 

router is invoked once this information is obtained.  Once complete, the router produces a 

compact output file of all the metal segments required to route the circuit and a collection 

of routing statistics about the solution is has generated.  Examples of these statistics 

include the total length of wire used in the routing attempt, the distribution of wire usage 

over the routing area, and any connections that the router could not successfully route.  

By creating a “feedback” loop between the placement and routing modules, this 

information can be utilized by the placer to improve the overall quality of the layout and 

the success rate of subsequent routing attempts in the event of an initial routing failure. 

 
Figure 11: Router Position in ATL CAD Flow 
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4.2 Routing Goals & Constraints 

Although electrical legality is the only direct constraint imposed on the router’s 

operation, the definition of a high-quality routing algorithm is based on a combination of 

the routed circuit’s performance, the success rate (i.e. routability) that the algorithm has 

in generating a legal routing, and the computational resources required by the routing 

algorithm.  A balance of these factors is necessary to produce a tool that is useful in the 

FPGA design process in both academia and industry. 

 

The most prominently used measurement for qualifying synchronous circuit 

performance is the maximum delay between any two registers in the logic design.  The 

inverse of this delay represents the maximum frequency for the clock (denoted Fmax) at 

which the circuit can operate successfully.  However, our project focuses on generating a 

routing for an FPGA tile, which is a platform for other digital logic designs.  Therefore, 

the true goal is to produce a layout that enables the FPGA to be able to implement other 

logic designs with the highest Fmax.  This implies that equalizing the delays on all the 

paths will not necessarily to the best performance for the FPGA.  Although there are a 

substantial number of factors that need to be considered for the evaluation of the FPGA’s 

performance, the standard method is to generate a delay profile for several representative 

paths of the FPGA tile.  Some paths of interest, based on FPGA CAD tool research are 

listed below. 

• The delay between the LUT inputs and the logic element flip-flops. 

• The delay between the output of a logic element and the input of another logic 

element in the same tile. 
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• The delay between the output of a logic element and the edge of the tile for each 

of the wire types available (e.g. short vertical, short horizontal, long vertical, long 

horizontal). 

• The delay to traverse the entire width/height of the tile. 

 

Based on the high- level architecture, the FPGA designer needs to give guidance 

to the CAD tool about the relative importance for each of the representative paths of the 

FPGA tile.  VPR & VPR_LAYOUT, the software tools that transform the high- level 

architecture description into the circuit netlist that ATL uses, currently do not support the 

specification of timing constraints.  These applications need to be modified in order to 

propagate the FPGA designers’ timing requirements to the routing module.  In the 

absence of this specific timing information, the ATL router attempts to equalize the delay 

on all paths.  However, the router is designed such that timing information could be 

incorporated with minimal modifications to the core algorithmic structure.  In order to 

effectively and efficiently monitor the routing quality with respect to timing, a fast and 

accurate net delay extractor and a path-based timing analyzer need to be developed.  The 

details of this process are well known and thoroughly discussed in [1]. 

 

The effort spent by the router to create a routing that minimizes the delay for the 

majority of connections is wasted if the solution is not electrically legal.  A potential 

layout is worthless if there is even one connection that does not have a legal path.  

Although the inability to route a single path does not appear to have significant 

ramifications, the routing task is sufficiently complex and massive to preclude “hybrid” 
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solutions involving a software routing algorithm that produces a layout that is almost 

legal and a cleanup phase performed by hand.  Therefore, the most important goal for the 

routing engine is to generate solutions where 100% of the connections are legally routed 

– even at the expense of increasing the average/maximum connection delay. 

 

A final consideration for CAD tools that cannot be overlooked is the amount of 

computational resources that are required to generate a solution.  In order for an 

automated layout tool to be useful to FPGA architects, the application must be able to 

produce a layout within a reasonable amount of CPU time and utilizing a reasonable 

amount of physical RAM.  These aspects were important considerations in the design of 

the router since similar commercial CAD tools for VLSI place-and-route have substantial 

hardware requirements [10].  We expect that a high-quality design and memory 

utilization strategy is necessary to ensure our router can function effectively with a 

reasonable amount of hardware resources.  Our initial expectations regarding hardware 

utilization anticipate that the inter-cell routing module could route the largest circuit in 

our test suite in 15 minutes on a 1 GHz processor using, at a maximum, 256 MB of 

physical RAM.  These computational constraints serve as an initial filter for various data 

representations and heuristics that were considered in the design phase of the routing 

module.   

 

4.3 Routing Grid 

The router is required to connect up the cell pins of the logic design.  This task is 

accomplished by defining the position of the metal segments that carry the logic signals 



 34 

across the FPGA tile in order to implement the high- level FPGA architectural functions.  

An important aspect of the inter-cell routing component of ATL is the internal 

representation of the area available for routing wires.  Since the router algorithm 

constantly requests information about the “status” of the metal area, the accessibility and 

memory efficiency of the metal area’s internal representation is paramount in the design 

of the inter-cell routing module. 

 

The goals and constraints defined for the router in the previous subsection 

emphasize that the success of the router is a more important consideration than 

minimizing the amount of computational resources required by the routing heuristic.  

Two dominant representations of the metal surface have emerged for detailed routing 

algorithms in VLSI CAD tools [11].  The first of these representations is a grid that 

partitions the metal surface into equally sized regions, called nodes.  The routing grid 

representation maintains explicit information as to which metal connection(s) occupy 

each routing grid node.  The second representation records the state of the metal surface 

in a list of wires – each representing a single metal segment.  The grid data structure 

requires more physical memory, since information is maintained about all locations on 

the routing surface, while the edge list approach only maintains information about the 

locations that are currently occupied by a routing connection.  However, the grid 

representation has a distinct speed advantage since a constant time algorithm is available 

to identify whether a particular region of the routing surface is occupied.  In contrast, the 

edge list approach requires a linear search through a small set of edges to answer a 

similar ‘occupancy’ query.  Based on these reasons, we decided to use the grid approach 



 35 

to represent the metal surface in the router.  The rest of this sub-section provides details 

as to the exact relationship between the routing grid and the physical metal surface, how 

the information from the netlist placement is transferred to the routing grid, and how the 

routing grid serves as a convenient abstraction to shield the routing algorithm from 

actively considering layout design rules. 

 

4.3.1 Design Rule Considerations 

Current technological limitations enforce certain restrictions on the relative 

placement and connectivity for IC components in the layout.  These restrictions are 

necessary to ensure that the layout has a reasonable chance of surviving the fabrication 

stage without any defects.  Our project must consider these constraints in order for the 

generated layouts to be representative of a legal solution to the VLSI routing problem.  

Each VLSI process technology has a detailed set of process “design rules” that define the 

minimum distances between different types of metal wires that should be respected in 

order for the resulting layout to have a reasonable chance to pass the fabrication phase 

without experiencing a fault created by process variations.  A single fault in a VLSI 

circuit renders the entire fabricated circuit useless.  Therefore, it is critical that the routing 

solution respects the process design rules. 

 

The design rules for a process are specified in terms of absolute distance, that is, 

µm.  However, since each process size defines a unique set of design rules, it is unlikely 

that a layout in one process is transferable to another process.  An alternate to using 

physical distances in the specification of design rules is to represent the constraints as 
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“Scalable CMOS Design Rules” [8].  This approach involves defining all design rules in 

terms of integer multiples of a base unit, λ, which is equivalent to ½ the minimum 

transistor length for the VLSI fabrication process.  The primary advantage to this 

approach is that layouts that abide by the scalable design rules can be implemented in a 

wide range of semiconductor fabrication processes.  Unfortunately, processes in the deep 

sub-micron range (λ ≤ 0.35µm) have additional constraints due to quantum effects and 

fabrication limitations.  An additional disadvantage is that the design rules must be 

conservative.  These factors indicate that layouts generated by scalable design rules 

generally require more silicon area than equivalent designs implemented using absolute 

physical distances.  However, since all the scalable design rules are specified in integer 

multiples, we believe that using them will greatly simplify the core of the routing 

algorithm.  Since the primary goal of our project is to determine the feasibility of an 

automated approach to transistor- level design and layout of FPGAs, it was decided that 

we would be able to answer this question more quickly by using scalable design rules. 

 

The routing grid is a three-dimensional structure. It is composed of an arbitrary 

number of metal layers – a parameter specified by the user to ATL.  Each metal layer is 

divided into a grid of “squares”, called routing grid nodes.  Each routing grid node 

represents an 8λ x 8λ region of silicon area available for metal interconnect.  The size of 

a node is chosen to be the minimum area such that two wire segments carrying different 

electrical signals can be positioned in adjacent routing grid nodes without violating any 

constraints imposed by process design rules.  The scalable design rules for a 0.13µm 

process specify that the minimum width for metal wires on all layers except metal 1 is 4λ 
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and that the minimum spacing between wires is also 4λ.  However, since the 1st layer of 

metal is reserved for intra-cell routing, these scalable design rules are layer- invariant.  If 

the scalable design rules were not used, it would not be possible for the routing grid to 

have uniform design rules on each layer of metal.  In that case, the structure of both the 

routing grid and routing algorithm would be substantially more complex. 

 

There are significant advantages in having layer-invariant design rules.  First, 

uniform dimensions for all routing grid nodes simplify the legality in using vias – the 

VLSI interconnect component that connects two pieces of metal on different layers.  

Several design rules that involve via legality do not play factor when the design rules on 

adjacent layers are equivalent.  A second benefit is that each routing layer will have an 

equal number of routing grid nodes.  This permits the three coordinates of a routing grid 

node (layer, x, and y) to be easily represented by an “encoded” index.  All data structures 

that reference routing grid nodes utilize the encoded routing grid index, as opposed to 

explicitly defining the three coordinates.  This results in substantial memory savings for 

ATL. 

 

The inter-cell routing algorithm selects routing grid nodes to connect up the logic 

design.  This information is not sufficient to generate a complete layout that can be 

implemented on silicon.  The representation of the metal region inside each routing grid 

node must be exactly defined.  This involves specifying the occupancy of each 1λ x 1λ 

unit of metal.  This information is extracted based on the immediate connectivity of a 

routing grid node.  In order to support all possible connectivity configurations, each 
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routing grid node has been divided into non-overlapping sub-regions.  Figure 12 shows 

the breakdown of the metal area of a single routing grid node into the different sub-

regions. In this diagram, each square represents a 1λ x 1λ unit of metal. 

 

 
Figure 12: Relationship between Routing Grid Nodes and the Metal Area 

 

 For all grid nodes that are used in the routing of the circuit, the “default” 4λ x 4λ 

sub-region located in the centre of the available metal area used.  The 2λ x 2λ port/via 

sub-region is used if there is either a port or a via in that node.  These layout choices 

respect the design rules involving via enclosure.  The other four sub-regions are used if 

the nodes on the same metal layer that are adjacent to the node in question are used in the 

routing of the same net.  Since each sub-region represents a distinct piece of metal, a 

routing grid node may contain any combination of the sub-regions.  Figure 13 shows the 

additional sub-regions that are used for each node in the routing of a sample net on one 

layer of metal.  Each square in the diagram represents a single routing grid node.  The 

letters L/R/T/B represent that the “Left Wire”, “Right Wire”, “Top Wire”, and “Bottom 
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Wire” sub-regions, respectively, are used in that routing grid node.  It can be easily seen 

that the resulting metal segment is unbroken and respects all design rules considered by 

the router. 

 

       

 R L/R L/R/B L/R L  

   T/B    

   T    

       

Figure 13: Underlying metal representation for routing grid nodes 

 

4.3.2 Coordinate Transformation 

The inter-cell router only deals with connections that are between the cells.  The 

intra-cell layout module defines the connections that are fully contained inside a single 

cell.  In order to obtain a relatively compact layout, two metal layers have been dedicated 

to intra-cell routing.  It was decided that the routing module exclusively use the metal 

layers above metal 2 to connect the cells together.  Since intra-cell layout is restricted to 

metal 1 and metal 2, all the “other” metal layers are unoccupied (i.e. have no metal 

segments in them) when the routing phase commences.  This design decision was made 

since cells occupy the majority of the area in the tile (>90%) leaving only a small amount 
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of available metal area on the bottom two layers of metal routing.  Additionally, there 

would be significant complexity introduced by allowing the router to use the same metal 

layers as intra-cell layout since the explicit design rule checking would be required to 

ensure electrical legality.  To accomplish this, the internal layout of each of the cells 

would need to be exposed to the routing module.  Therefore, restricting the router in this 

manner allows all cells to be treated as “black boxes”.  Because of this, the overall layout 

will be electrically legal provided that the router generates a solution that completes all 

the connections specified by the netlist.  

 

In order to create an electrically legal routing, a conversion of the positional 

information from the placer coordinate system to the router coordinate system is required.  

It is imperative that this transformation maintains the aspect ratio of the FPGA tile, the 

relative positions of the cells to the FPGA tile, and the relative positions of the cell pins 

inside the cells – all specified by the placement phase.  Provided that each cell pin is 

specified at a unique location, it is possible for the routing grid to be identical in size to 

the placer grid.  This implies that each location on the placer grid represents an 8λ x 8λ 

area on the metal surface.  If a unity mapping between the coordinate systems is used, the 

intra-cell layout information is exactly preserved.  If a unity mapping is not preserved, 

then the coordinate transformation will “skew” any implicit intra-cell layout information 

in the cells.  It should be noted that the uniqueness requirement does not apply to ports on 

the perimeter of the tile since these ports, unlike cell pins, are not bound to a single layer 

of metal.  Therefore, it is possible to resolve multiple tile ports at the same location into 

different layers of metal without losing any intra-cell layout information.  The only 
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limitation is that the number of tile ports at any given layer is less than or equal to the 

number of metal layers available for inter-cell routing. 

 

Limiting the input netlists to the routing module to respect the constraints defined 

above would reduce the usefulness of the router. In order for the routing module to be 

able to accept netlists that specify multiple pins at the same tile location, the routing grid 

needs to be larger than the placement grid.  We use the concept of grid granularity to 

represent the relationship between the sizes of the placement grid and the routing grid.  

Specifically, defining a grid granularity of g specifies that the dimensions of each metal 

layer on the routing grid are g times larger than the dimensions of the placement grid.  

For example, if the placement grid size is 150 x 200 units and a granularity of 2 is 

specified, the routing grid size would be 300 x 400 units.  However, the metal area that 

each routing grid node represents is 8λ x 8λ, regardless of the granularity of the routing 

grid.   

 

The value of g is limited to integer values greater than or equal 1, since a 

transformation that preserves the location information in the placer netlist cannot be 

defined for non-integer values of grid granularity.  The only limitation on selecting grid 

granularity is that the cell pins that appear on the placed netlist must be able to be 

uniquely resolved into routing grid nodes.  Since the size of the routing grid is 

proportional to the square of grid granularity, it is extremely important to keep this value 

as small as possible. 
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The netlists that were produced by the original ATL code had multiple cell pins 

appearing at a single placer grid location since it did not utilize specific intra-cell layout 

information.  Although the placer can operate successfully in the presence of 

“overlapping” pins, the router is unable to since it is electrically impossible to place more 

than one pin in an 8λ x 8λ area of silicon.  The concept of grid granularity enables the 

routing module to transform these netlists to the routing grid and try to successfully route 

the circuit.  By increasing grid granularity, any placed netlist can be routed by the routing 

module, irrespective of whether an exact intra-cell layout has been defined.  However, 

once an intra-cell layout has been defined, the exact locations of the cell pins are known, 

relative to the cell, and are guaranteed to be non-overlapping.  Therefore, a grid 

granularity of 1 (unity mapping) can be used for all netlists that implicitly contain intra-

cell layout information.  Furthermore, all values of grid granularity other than 1 will 

distort any implicit intra-cell layout information contained in the netlist.   

 

The validity of the solution produced by ATL is intimately dependent on the fact 

that the intra-cell layouts for all cell types in the FPGA tile are specified according to an 

8λ x 8λ “grid”.  Specifically, the size of each cell on the netlist corresponds to a layout of 

the exact size assumed by the router us ing a unity mapping to translate the placer 

coordinate system to the router coordinate system.  Additionally, the positions of the 

ports for each cell type must be located at the region available for ports, as specified by 

Figure 12.  For example, if the layout for an SRAM cell is 32λ x 48λ, the size of the 

SRAM cell on the netlist must be 4 units by 6 units.  Ports on the SRAM cell must be 2λ 

x 2λ and the lower left-hand corner of the ports can only be positioned at one of the 
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locations specified by the following relationship: [(8x + 3)λ, (8y + 3)λ], where ]3,0[∈x  

and ]5,0[∈y .  If both these conditions hold and the grid granularity is set to 1, then the 

routing grid will be an exact representation of the silicon area used to layout the SRAM 

cells.  If the layout for all netlist cells satisfies these conditions, the routing module will 

contain the “true” view of the entire chip. 

 

Before the routing algorithm is discussed, we present the procedure for resolving 

multiple pins at the same location in the placement grid.  The original pin positioning 

code developed in [2] places the pins on the perimeter of the block and tries to group 

different pin classes to be representative of a potential layout.  The procedure used to 

assign routing grid coordinates to each block pin begins by classifying each placer grid 

coordinate to one of nine regions based on the various sides of a cell directly reachable 

from the placer grid coordinate.  Figure 14 outlines the classifications for a coordinates 

inside a cell that has dimensions 4 x 5 (in terms of the placer grid). 

Top Left Top Middle  Top Middle  Top Middle  Top Right 

Middle Left Middle Middle Middle Middle Right 

Middle Left Middle Middle Middle Middle Right 

Bottom Left Bottom Middle  Bottom Middle  Bottom Middle  Bottom Right 

Figure 14: Classification of block coordinates for the pin placement algorithm 
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For each coordinate classification that represents a placer grid coordinate adjacent 

to an edge of a cell, block pins can be positioned in the routing grid spaces that map into 

that single placer grid coordinate.  Assuming a grid granularity of 3, a single square in the 

placer grid represents a 3x3 region of routing grid nodes.  It was deemed that the non-

corner squares can support three block pins; one pin on the “edge” of the block at each 

routing grid coordinate.  The rationale for this decision is that block pin congestion would 

be significant if pins were placed two rows deep – the 2nd row of pins (i.e. the pins closer 

to the middle of the block) would be forced to use a via in order to connect to another 

block pin outside the cell.  The corner squares can support four block pins, one pin for 

each router grid square on the perimeter, but not on the direct corner of the block.  This 

decision seemed obvious since it would be difficult to imagine a layout that would have a 

pin at the direct corner of the block.  Figure 15 illustrates the valid pin positions for each 

of the nine coordinate classifications, assuming a grid granularity of 3. 
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Figure 15: Pin positions used to resolve contentions on the placer coordinate system 
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For each cell, the algorithm assigns positions to each block pin based on its 

coordinate classification and on the number of pins that have already been assigned to 

that square on the placer grid.  The algorithm has been designed to be flexible in both the 

granularity of the router grid coordinate system and the legality of the block pin positions 

for each coordinate classification. 

 

4.3.3 Routing Grid Abstraction 

The primary purpose of defining the routing grid and a complicated mapping 

between the coordinate systems in ATL is to isolate the routing algorithm from actively 

considering issues involving design rule legality.  If the router can find the sequences (i.e. 

paths) of routing grid nodes that should be used to electrically connect the logic design 

together such that every routing grid node is used, at most, one time.  The underlying 

metal representation of the circuit is extracted based on node connectivity, as was 

previously illustrated in Figure 13.  The size of each routing grid node is specified such 

that the design rules involving metal spacing, metal width, and via enclosure are all met if 

two wires carrying different electrical signals are positioned in adjacent grid nodes.  

Since the routing algorithm can only select the sequence of nodes for a given position, it 

is guaranteed that the metal wires inferred from the path selections made by the router are 

legal, with respect to the design rules being considered. 
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4.4 Routability-Driven Router 

The routing algorithm is an extension of the classical maze router approach [12], 

with various elements incorporated and adapted from routing algorithms for FPGAs 

[4],[9].  Although the FPGA routing algorithms that we have examined do not define 

silicon metal wires, they operate on a “resource graph” [9] – an equivalent of the routing 

grid.  This sub-section will discuss the key aspects of the routing algorithm, the primary 

reasons for its success, some additional enhancements to improve the performance and 

speed of the algorithm, and the results it has obtained.  The routability-driven router does 

not actively consider the delay of each path.  Instead, its only focus is to generate a legal 

solution.  Since the routing algorithm we developed is the first known work attempting to 

perform a combined global-detailed route at the transistor level for an FPGA tile, the 

emphasis was placed on feasibility.  However, connection delay is given secondary 

consideration, since the router is trying to minimize wirelength, which has an indirect 

correlation with the delay of a routing path. 

 

4.4.1 Algorithm Structure 

Using terminology developed in the previous sub-sections, the routing problem 

can be restated as follows: determine, for each net, a sequence of routing grid nodes that 

electrically connects all the terminals of that net, such that no rout ing grid node is used by 

more than one net.  The routing algorithm also tries to minimize wirelength used and 

balance the delay for all the connections in the circuit.  A net that needs to connect more 

than two terminals together is called a net with multiple fanout.  The starting point, called 

the source, is required to connect to several destination terminals, called sinks.  All cell 
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pins that are sources represent an electrical connection to the drain of a transistor.  

Similarly, all cell pins that are sinks represent an electrical connection to the gate of a 

transistor.   

 

The routing of a single connection essentially involves running Dijkstra’s 

algorithm [13] on the routing grid trying to find the shortest path (lowest total cost) 

between the source and the sink nodes.  The routing grid has implicit edges between 

adjacent routing grid nodes.  The weight on each edge in the entire graph is set to unity.  

The routing of a net essentially consists of routing several two-pin connections, each 

having the same source node.  However, since all sinks on the same net are electrically 

equivalent, the router can “re-use” any routing grid nodes that have been selected in the 

routing paths for connections on the same net.  Therefore, the routing of high-fanout nets 

is a tree- like structure, as opposed to a series of isolated connections. 

 

An important term used in the description of the routing algorithm is the 

“wavefront” of the net.  The wavefront is the set of nodes currently being considered by 

the search algorithm.  When a new connection is considered, the wavefront consists of 

the nodes that have already been selected for this net.  The algorithm then considers 

routing grid nodes adjacent to the nodes currently in the wavefront – in effect, expanding 

the extent of the wavefront.  This process continues until the sink being searched for is 

included into the wavefront of the net. 
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The computational complexity of Dijkstra’s algorithm and the traditional maze 

router approach is O(n2), where ‘n’ is the number of nodes in the routing grid.  Several 

FPGA tiles we are routing have over one million routing grid nodes.  The size of these 

tiles imply that a heuristic having a computational complexity O(n2) will be unacceptably 

lengthy.  The creators of Pathfinder describe an essential enhancement to improve the 

speed of the routing algorithm.  The simple breadth-first approach of Dijkstra’s algorithm 

is extended to use an A*, or directed, search [9].  By considering an additional cost term 

(in addition to path distance) in the algorithm that is based on the distance to the target, 

the execution time of the algorithm can be greatly reduced.  When this approach is run in 

the absence of congestion, the computational complexity is O(n) provided that the costs 

of any two adjacent nodes are ordered such that the node closer to the target has a lower 

cost than the node farther from the target.   

 

The traditional maze router approach [12] does not allow the overuse of routing 

resources.  This fact exposes the severe limitation that one routing path may block 

another path.  Since the FPGA tile has thousands connections, this path “blocking” is 

inevitable.  In order to overcome this limitation while still using an algorithm that routes 

the netlist connections serially, our routing algorithm uses the negotiated congestion 

principle that is present in both the Pathfinder [9] and VPR [3] routing approaches.  The 

crux of negotiated congestion is allowing the overuse of routing resources and using the 

cost function to allow congestion to gradually be resolved as the algorithm progresses.  

These algorithms repeatedly rip-up and re-route every net in the circuit until all 

congestion is resolved – this idea is due to Nair [15].  Ripping-up and re-routing every 
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net in the circuit once is called a routing iteration.  ATL continually performs routing 

iterations until the circuit can be legally routed without any congestion or a maximum 

number of iterations have been reached, at which point the router declares the circuit 

cannot be legally routed.  Figure 16 contains the pseudo-code for the routability-driven 

routing algorithm used in ATL.  
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Let:  RT(i) be the set of nodes, n, in the current routing of net(i); 

PriorityQueue  be a set of { TotalCost(n), PathCost(n) } pairs for each node, n, in 
the current wave expansion, sorted on TotalCost 

 
StoredTotalCost be arrays with one entry per routing grid node, with all entries 
initialized to a huge number 

 
PresCost and AccCost be arrays with one entry per routing grid node 
representing the current congestion and accumulated congestion costs of using 
that node in the routing of a connection 
 

while (overused resources exist) { /* Illegal Routing? */ 
  for (each net, i) { 
    rip-up routing tree RT(i) and update affected PresCost values; 

 
    RT(i) = NetSource(i); 

 
    for (each sink, j, of net(i)) { 
      PriorityQueue = RT(i) at { TotalCost(n) = α(DistanceToTarget(n)),  

PathCost(n) = 0 }; 
    
        while (sink(i,j) not found) { /* wave expansion */ 
          Remove lowest TotalCost node, m, from PriorityQueue; 
 
          if (TotalCost(m) < StoredTotalCost(m)) { 
 
            StoredTotalCost(m) = TotalCost(m); 
 
            for (all adjacent nodes, n, of node m) { /* expand node m */ 
 
              PathCost(n) = PathCost(m) + PresCost(n) * AccCost(n); 
              TotalCost(n) = PathCost(n) + α(DistanceToTarget(n)); 
 
      if (TotalCost(n) < StoredTotalCost(n)) { 
                Add n to PriorityQueue at { TotalCost(n), PathCost(n) }; 
              } 
            } 
          } 
        }  /* end wave expansion */ 
       
        for (all nodes, n, in path from RT(i) to sink(i,j)) { /* backtrace */ 
          Update PresCost(n); 
          Add n to RT(i); 
        } 
 
        for (all nodes, n, expanded during previous wave expansion) { 
          StoredTotalCost(n) = HugeNumber; 
        } 
      } 
    } 
 
  } /* end net routing */ 
 
  Update AccCost(n) for all n; 
  Update PresCostMultiplier & PresCost(n) for all n; 
 
}  /* end routing iteration */ 

Figure 16: Pseudo-code of the routability-driven routing algorithm 
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4.4.2 Routing Representations 

An examination of the pseudo-code contained in Figure 16 reveals that the routing 

algorithm uses two major data structures: a priority queue to maintain the list of nodes, 

sorted by total cost, that are currently in the wavefront expansion and a routing tree to 

identify the connectivity pattern of the nodes currently contained in the routing of a net.  

A heap was chosen to implement the priority queue, since the routing algorithm only 

wants to examine the node in the wavefront expansion with the lowest cost.   

 

The only complicated operation that is performed on these data structures is the 

addition of the nodes in the path from RT(i) to the sink(i, j).  In order to discuss this 

operation, the structure of the routing tree needs to be explained.  The physical structure 

of the routing tree is intuitive; it contains the routing grid node indices for all of the 

connections in a given net in a tree-like format.  “Join points” are the only nodes in the 

routing tree that have more than one child node.  At the start of the routing of each net, 

the routing tree consists of exactly one node – the routing grid node representing the 

source of the net.  After the routing algorithm determines the path for each connection on 

the net (all nets have at least one connection), the routing tree is updated to reflect the 

new path by examining the sequence of heap elements selected to be part of the new path.  

The 1st heap element considered by the routing algorithm will be a node that exists in the 

routing tree at the beginning of the wavefront expansion algorithm.  Due to this fact, it is 

possible to correctly update the tree and identify the join point for the new segment of the 

net’s routing. 
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In addition to the heap and routing tree data structures, we decided that there 

should be a common data structure for representing a sequence of routing grid nodes.  

This was a necessary step since the intra-cell layout, inter-cell routing, and graphical 

editor modules were developed in parallel.  We decided to use a linear linked list data 

structure of routing grid nodes to communicate the sequence of interconnect segments 

used to route the each connection in the netlist.  This linear linked list of routing grid 

nodes will be called the “traceback” for a net.  The traceback is composed of segments, 

where each segment identifies the new routing grid nodes selected by the algorithm for 

each successive connection in a net.  In order to identify join points, each segment of the 

traceback structure needs to repeat one of the routing grid nodes in a previous segment of 

the net.  Additionally, a “separator” element in the traceback structure is needed to 

identify the beginning of a new segment.  The equivalent traceback data structure for a 

potential routing for a 3-pin net on a sample routing grid is displayed in Figure 17. 

1 2 3 4 5 6 7 

8 9 10 11 12 Pin C 
13 

14 

15 16 17 18 19 20 21 

22 Pin A 
23 24 25 26 27 28 

29 30 31 32 33 34 35 

36 37 38 Pin B 
39 40 41 42 

43 44 45 46 47 48 49 

 
Associated Traceback: 23à24à25à32à39àXXà25à26à27à20à13 

Figure 17: Representation of the Traceback Data Structure 
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The routing tree and the traceback are essentially two different representations of 

the same information; that is, they contain the routing grid nodes used to connect the 

different terminals of a single net.  Both representations are useful since each has unique 

advantages based on the position in the program flow that needs to access current routing 

information.  The routing tree is more convenient representation when the rout ing engine 

is active since it is less cumbersome of identifying the join points in a net’s routing.  

Additionally, according to [4], the routing tree structure is more appropriate for storing 

timing information, a future goal for the ATL router.  However, the traceback data 

structure provides a more compact representation, it is easier to traverse, and most 

importantly, the traceback is segmented into a series of connections that mimics the 

ordering of connections in the cell- level netlist.  This correlation is required so that there 

is a logical linkage between the routing and the circuit description.  The routing tree data 

structure does not have this essential relationship.  Figure 18 shows the contents of each 

of the data structures as each connection in the net of Figure 17 is routed. 
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Figure 18: Comparison of Routing Tree and Traceback Representations 

 

4.4.3 Cost Function 

As shown in the pseudo-code algorithm, the routing algorithm assigns a “cost” to 

a routing grid node being considered in the wavefront expansion based on the cost of the 

previous node on the path being considered, the current congestion of that node 

(PresCost), and the historical congestion of that node (AccCost).  In essence, the cost 

reflects the circuit’s demand to use a specific point of the metal area and the total amount 

of metal on the path required to reach this node.  It is critical to realize that the algorithm 

considers not only the cost of the routing grid node currently being considered in the 

directed breadth-first search, but also the cost of every routing grid node on the “best-
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case” path to reach current point on the wavefront.  The notion of the “best-case” path is 

guaranteed since the router will never add a node to the priority queue if another path has 

been considered that has a lower cost to that node. 

 

As already described, congestion arises when two nets occupy the same routing 

grid node.  Therefore, when considering a routing grid node to be used for the connection 

being routed, congestion will occur if one or more nets already occupy that node.  The 

formula for the value of the present congestion cost, PresCost, is given by Equation 1, 

where Occ(n) represents the occupancy of the routing node being considered and 

PresCostMultiplier represents the “severity” of congestion at the stage in the routing 

algorithm.  The lower bound on present cost is 1.0, representing the intrinsic cost of using 

this routing element. 

tiplierresCostMulPnOccnresCostP ⋅+= )(1)(  

Equation 1: Present Congestion Cost for Routing Grid Nodes 

 

The principle of negotiated congestion is realized by setting PresCostMultiplier to 

be unity in the first routing iteration and increase it exponentially for all routing iterations 

that end with congestion remaining.  Specifically, it was determined that defining 

itertiplierresCostMulP β= , where iter is the current iteration number, and β  = 1.15, 

provides a balance between trying and removing congestion and minimizing the 

wirelength used by the circuit.  In order to increase the importance of congestion as the 

algorithm progresses, the constant β  must be greater than unity.  As β  increases, the 

router tries to remove the congestion more quickly and, in most cases, produces a 

solution that requires more wirelength, or declares the circuit to be not routable. 
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The accumulated, or historical, cost “future” cost of the path represents the total 

pressure experienced on a specific routing grid node over all the routing iterations.  This 

term in the cost function helps the process of resolving node congestion by identifying 

the nodes that should be avoided.  This indicates to the router that a node that has 

continuously been congested should only be used when it results in significant savings 

(i.e. much lower cost function).  This cost function term is especially important when the 

routing of a net is “forced” to use a congested node and all the congested nodes have 

equal present congestion.  In order for the solution to move towards convergence, the 

router must select the node that has less historical congestion.  Equation 2 specifies the 

formula for adjusting the accumulated cost of a routing grid node at the end of a routing 

iteration.  At the beginning of routing, AccCost is set to unity.  It was found that α = 0.25 

provides a good balance between the multiplicative weight of historical congestion and 

present congestion when a node is being considered in the wavefront expansion. 

)()()( nOccnAccCostnAccCost ⋅+= α  

Equation 2: Historical Congestion Cost for Routing Grid Nodes 

 

The final aspect of the cost function is the relative weights of the “explored” to 

the “unexplored” portion of the path being considered.  Equation 3 specifies the formula 

for the total cost assigned to a node n, a neighbour of node m, the node currently being 

considered in the expansion process.  The function DistanceToTarget(n), is the minimum 

Manhattan (i.e. rectilinear) distance to the sink node of the current connection being 

routed.  It should be noted that the Manhattan distance to the target is equal to the lower 



 57 

bound of PathCost(target) - PathCost(n).  This is one of the requirements of the A* 

search algorithm enhancement [14]. 

[ ] )()()()()( nrgetanceToTaDistnAccCostnresCostPmPathCostnTotalCost ⋅+⋅+= α  

)()()()( nAccCostnresCostPmPathCostnPathCost ⋅+=  

Equation 3: Expansion Costs for Routing Grid Nodes 

 

The constant α determines the “directedness” of the routing algorithm.  For values 

of α greater than 1, a routing node that is closer to the target than any node in the 

wavefront will have the lowest cost, provided it is not currently congested.  Since the 

lowest cost node is always pulled from the heap first, the algorithm will only explore 

nodes that move towards the target.  This is only true if all nodes being explored are not 

congested.  The effect of congestion alters the selection of routing grid nodes in the 

expansion process.  The cumulative effect of all three fundamental equations involved in 

the router cost function is that the router identifies a solution as quickly as possible when 

there is no congestion, but considers alternate paths depending on the severity of the 

congestion. 

 

4.4.4 Speed Enhancements 

The amount of CPU time required for the algorithm presented in the previous sub-

sections is heavily influenced by the amount of free space in the routing grid and the 

number of metal layers that the router is allowed to use to route the circuit.  Allocating a 

larger size to the routing grid – in effect, increasing the percentage of “free space” in the 

routing grid – or increasing the number of layers available to the router dramatically 
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reduces the CPU time required to route the circuit.  The explanation for this phenomenon 

is based on the schedule for PresCostMultiplier.  The routing algorithm cost function 

schedule increases this multiplier exponentially as the algorithm progresses.  Therefore, 

in a situation that is a deterministically unroutable, the algorithm will continually explore 

(in futility) an increasing number of paths before declaring the “best” path, based on total 

cost, to be a congested one.  For scenarios that are on the threshold of being routable, the 

router requires many routing iterations in order to resolve all the congestion.  In contrast, 

a situation that is “easily” routable requires significantly fewer routing iterations and can 

be routed in a fraction of the time.  Adding a new metal layer to the routing grid for a 

circuit on the threshold of being routable can decrease the CPU time required by an order 

of magnitude.  Adding two metal layers can decrease the CPU time by two orders of 

magnitude.  However, after a certain point, no further time reductions can be obtained by 

adding additional metal layers. 

 

One of the simplest speed enhancements made to the routing algorithm that was 

implemented is to identify whether a net is currently legal and instructing the routing 

algorithm not to perform a re-route of a net unless at least one routing grid node in that 

net is currently congested.  This does not degrade the quality of the routing since, 

generally, the total wirelength used to route a net increases as the router tries more 

diligently to remove congestion.  If the router finds a solution with no congestion when 

the weight assigned to congestion is low, then we can declare the initial legal solution to 

be the “best” legal solution in the routing context and no further routing attempts are 

needed for that net.  If the router cost function picks a routing grid node on a legally 
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routed net to be used by congested net, then the legally routed net becomes congested 

again and it will be re-routed in the next routing iteration.   

 

The time saved from not re-routing legal nets is substantial.  On average, over 

90% of the nets are legally routed when the router reaches the “halfway” iteration mark 

of the legal solution.  That is, if the router takes 50 iterations to find a solution, 90% of 

the nets are legally routed at iteration number 25.  However, the speedup from this 

enhancement is not proportional to the percentage of nets that are routed since most of 

the legally routed nets are 2-pin nets, whereas the remaining congested nets have a 

significant number of pins.  An important point of this speed enhancement is that it does 

not introduce any degradation in the routability of any circuit.  That is, this speed 

enhancement will not prohibit the router from finding a legal routing for the circuit, if one 

exists.   

 

Another enhancement was made to the core of the routing algorithm after several 

circuits took an unexpectedly long time to route a single net.  After some investigation, it 

was discovered that the router was using an extremely large amount of memory to route a 

connection and was increasing the CPU time of the routing algorithm due to the 

swapping of memory to and from the hard drive.  The situation that occurred was that 

thousands of copies of many congested routing grid nodes were being placed onto the 

routing heap.  Although a node is added to the heap only if the cost to that node is less 

than the lowest path cost to that node.  However, the lowest path cost, 

StoredTotalCost(n), is only set after a path to that node is considered.  Since the routing 
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grid nodes causing the problems were congested, the costs of these nodes were high 

enough so that they were never being pulled from the heap.  Therefore, each of the 

thousands of expansions to these nodes was added to the heap.  This is plausible since the 

number of paths between any two nodes is exponential based on the distance between the 

nodes. 

 

The “enhancement” that was developed to fix this problem exploited the principle 

that the relative costs for the expansion a single routing grid node are only dependent on 

their historical costs.  That is, the costs assigned to the neighbours a routing grid node 

will be at a minimum for the minimum cost path that reaches that node.  Therefore, it is 

not necessary to expand that node for any path other than the minimum cost path.  We 

define the “active heap element” of a routing grid node to be the element on the routing 

heap representing the minimum cost path to that node.  Additionally, we change the 

requirements for a routing grid node to be added to the routing heap to include the 

condition that the path cost to that node is less than the path cost of the active heap 

element for that node, if one exists.  This solution bounds the number of elements that 

can appear on the routing heap, limiting the memory used by the routing algorithm, and 

fixing the original problem. 

 

Another modification that was considered to improve the speed of the routing 

algorithm is modify the routing grid node expansion process to add nodes onto the heap 

that are not directly connected to the node being expanded.  The additional nodes that are 

added to the heap are in the same line as the nodes being expanded, closer to the target, 
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and a significant distance from the node being considered.  This process is dubbed “beam 

routing” since to the position of the additional nodes being considered are in a straight 

line, as a beam of light, in the direction of the target.  Figure 19 shows the locations of 

nodes being considered by the expansion of the node X. 
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Figure 19: Routing Grid Nodes Considered by Beam Routing Approach 

 

Although the beam routing approach speeds up the routing of a single net by 

reducing the number of elements added to the heap, it does not work well in the presence 

of congestion.  Therefore, special precautions were made to ensure that beam routing 

expansion does not double-back on itself and specify an illegal routing path. 

Experimental results have shown that beam routing has a negative effect on the CPU time 

required by the router since the computational effort required for determining the 

situations where beam routing can be legally applied is greater than the amount of time 

that is saved by exploring the nodes far away from the target.  Therefore, it can be 
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concluded that this approach, which appeared to look extremely promising in the 

theoretical stage, has no utility in practice and that the router achieves a better solution by 

methodically examining the routing grid one node at a time instead of trying to take 

shortcuts. 

 

One final technique to reduce the CPU time required is the addition of logic to 

predict whether the routing algorithm will eventually fail and terminate the algorithm 

once an accurate prediction of failure can be made.  As previously discussed, the router 

takes significantly more CPU time for circuits that are not routable.  This enhancement 

will improve the average time of routing a circuit.  However, it will not improve the 

amount of time to route circuits that have a congestion-free solution or are extremely 

close to have a legal solution.  The prediction code maintains a history of the number of 

overused routing grid nodes for all of the previous routing iterations.  The code that 

makes the decision whether to terminate the algorithm considers the number of overused 

routing grid nodes and the slope of the historical numbers for overall congestion.  For 

unroutable solutions, the router will terminate in less than one-third the time than letting 

the router attempt the maximal number of routing iterations. 

 

4.4.5 Performance Enhancements 

The routing algorithm structure presented in Section 4.4.1 focuses exclusively on 

resolving congestion and minimizing wirelength.  The main limitation of the cost 

function is that the path cost term is exclusively influenced by congestion at the node 

being explored.  The routability of a logic circuit can be improved by providing 
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additional information to the cost function about the decisions it can make that influence 

the global congestion of the circuit.  For example, it was found that the congestion near 

the edge of the circuit is particularly high since all connections that travel between cells 

are required to connect to the perimeter of the FPGA tile.  Therefore, it is useful to 

instruct the router to avoid using routing grid nodes near the perimeter of the chip unless 

absolutely necessary.  Additionally, by reducing the number of vias and bends in the 

circuit, the overall routability can be improved.  Finally, some VLSI routing approaches 

[19] specify that routing the majority of routing connections on the same layer in the 

same direction (i.e. horizontally or vertically) for any give same layer allow more routing 

tracks to be used in the available routing area.  However, it is important that each of these 

considerations be treated as guidelines and not as hard-and-fast rules.  For example, 

restricting all connections in metal 2 to route vertically would limit the search space of 

the routing algorithm. 

 

During the incorporation of these concepts into the router cost function, it was 

decided that the fundamental structure of the algorithm must not be perturbed due to its 

proven success in solving complex routing problems.  Specifically, any transformations 

applied to the cost function must not affect the negotiated congestion aspect of the 

algorithm.  Furthermore, it was realized that the cost function is structured so that two (or 

three) routing grid nodes adjacent to the node being explored would be assigned equal 

cost, assuming that there is no straight line from the node being considered to the target.  

Figure 20 shows the costs assigned to each node by the routing algorithm for a 

congestion-free circuit during the wave expansion for a 2-pin net.  It is assumed that the 
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multiplier for the DistanceToTarget function, α, is set to 1.1.  As seen in the diagram, for 

each routing grid node being expanded, both nodes that are closer to the sink are given 

equal costs.  Since the nodes have equal costs, the routing heap “randomly” selects one of 

the two nodes to be expanded.  It was recognized that the introduction of a small 

difference in the cost of routing grid nodes to reflect routing decisions on a global level 

would achieve the desired result, while not reducing the search space of the routing 

algorithm. 

        

      SINK  

        

  9.6      
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Figure 20: Costs Assigned in Wave Expansion Algorithm 

 

The routing algorithm was enhanced with several “bias factors” that introduce a 

small perturbation in the cost function to reflect global routing decisions that improve the 

overall routability of the circuit.  A “bias factor” is a condition applied to the expansion 

of a routing grid node that introduces a small difference in the cost assigned to its 

neighbours that has an effect on the global routability of the circuit.  Each bias factor is 

assigned a value, slightly greater than unity, which represents the penalty that should be 
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applied to a routing path that violates the bias factor condition.  The overall penalty 

applied to the node, BiasFactorPenalty(n), is the product of all the individual bias factor 

penalties that are applied to the path implied by the routing grid node being considered.  

Equation 4 represents the formulae for the PathCost and TotalCost variables that account 

for the effect introduced by bias factors. 

 

)()()()()( nPenaltyBiasFactornAccCostnresCostPmPathCostnPathCost ⋅⋅+=  

)()()( nrgetanceToTaDistnPathCostnTotalCost ⋅+= α  

Equation 4: Expansion Costs for Routing Grid Nodes with Bias Factor Considerations 

 

 Four bias factors are introduced into the router cost function: 

• Against Routing Flow:  This bias factor guides the router to route all paths on 

the same layer in the same direction. 

• Against Wire Direction:  This bias factor attempts to limit the number of 

“bends” in routing paths.  Zigzagging paths are commonplace if this bias 

factor is not considered. 

• Via Usage:  Routing paths that use vias are given a small penalty.  Although 

via use is inevitable, this factor tries to reduce the overall number of vias in 

the circuit. 

• Edge Usage:  Routing paths that are within 10% of the perimeter of the tile 

are slightly penalized. 

 

Figure 21 shows the costs assigned to each node by the routing algorithm that 

considers the “against routing flow” bias factor for a congestion-free circuit during the 
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wave expansion for a 2-pin net.  It is assumed that penalty for a routing path that 

violating this bias factor is 1.01 and that the vertical direction is the “flow” for this metal 

layer.  It can be seen from the diagram that the node costs are no longer equal and the 

router chooses the nodes that route the circuit in the vertical direction. 
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Figure 21: Costs Assigned in Wave Expansion Algorithm with Routing Flow Bias Factor 

 

 Another improvement that reduces the overall wirelength of the circuit is 

explicitly determining the order that connections of a multiple fanout net should be 

routed.  The netlist lists the destinations of a net in a random order.  Naïvely routing the 

connections by their position in the netlist data structure can generate extremely poor 

results.  The situation portrayed in Figure 22 illustrates a situation that can occur when 

the connection terminating at SINK1 is routed before the connection terminating at 

SINK2.  When the routing tree is added to the heap when the 2nd connection is being 

considered, the routing algorithm recognizes that SINK1 as the closest node to SINK2.  In 

this scenario, the overall routing path to SINK2 is extremely poor.  By changing the order 



 67 

of the connections, this effect can be avoided.  Figure 23 shows the resulting paths when 

SINK2 is routed before SINK1.  The wirelength savings from ordering the sinks of a net 

are proportional to the number of pins on the net.  However, over 90% of the nets in the 

circuits being considered by the ATL are 2-pin nets and do not experience any benefit 

from sink ordering.  

 

        

      SINK1  

        

        

        

      SINK2  

 SRC       

        

Figure 22: Naive Routing of 3-pin Net 
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      SINK1  

        

        

        

      SINK2  

 SRC       

        

Figure 23: Routing of 3-pin Net with Explicit Sink Ordering 

 

One final performance enhancement was the introduction of a “clean-up” routing 

iteration that re-routes every connection after the router has found a legal solution.  By 

inspecting the routing visually, using the graphical user interface that was developed, it 

was found that several nets had obvious paths that required less bends.  These sub-

optimal routes were not corrected since these nets were never re-routed once they were 

free of congestion.  Additional space for the sub-optimal path was created when the 

routing algorithm re-routed another path that was previously blocking the sub-optimal 

path.  An additional routing iteration where all nets are re-routed is performed to fix these 

sub-optimal routes while maintaining the speed advantage gained from not re-routing 

legal nets.  On average, this enhancement reduces the total wirelength and number of vias 

required by the circuit by one-tenth of a percentage point with a negligible increase in 

routing CPU time.  Additionally, this re-routing phase does not affect the routability of 
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the circuit since the router will select the same path for a net connection if no 

improvement for that connection can be found.   

 

4.4.6 Validation Module 

One of the most important tasks for any software system that attempts to solve a 

real world problem is the validation of the solution produced by the application.  A 

dedicated routing checker was developed that verifies that the routing module produces 

an electrically legal routing at the routing grid node level.  The routing checker does not 

consider the legality of the underlying metal representation.  Section 4.3.2 describes how 

the underlying metal representation is inferred from the utilization of a routing grid node 

and the necessary conditions to ensure that the metal representation corresponds to the 

implicit intra-cell layout information in the netlist.  In addition to validating the routing 

solution against the design rules, the checker serves the purpose of increasing our 

confidence that the routability-driven router algorithm is “correct” and that the data 

structures used to represent the routing are mutually consistent.  A stand-alone 

verification module lowers the chance that invalid or incomplete data is passed to other 

modules in the program flow; in our program, the graphics module uses the results of the 

router.  

 

The following major tests are performed in the stand-alone routing checker: 

Ø All the destination ports are connected in the routing of each net. 

Ø The routing of each net is a tree. 

Ø No portion of the circuit is electrically shorted. 
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Ø The occupancy specified by the traceback data structure agrees with the 

occupancy count annotated on the routing grid. 

Ø Each adjacent segment in a net's routing is logically connected to each 

other.  Specifically, the sub-regions in each of the routing grid nodes reflect the 

connectivity of that node. 

 

4.5 Placer & Router Communication Loop 

It is desirable that each invocation of the ATL application by the user will return a 

legal layout to the user.  In the cases where the routing algorithm fails to find a legal 

route, the placement needs to be modified in order for subsequent routing attempts to 

succeed.  An iterative loop has been developed between the inter-cell placement and 

inter-cell routing modules so that an electrically legal layout will eventually be identified 

after one or more unsuccessful routing attempts.  An important component in this 

iterative loop is the quality of information about the previous routing attempt that is 

transferred to the placer.  This component allows the placer to adjust for congested 

regions that it did not consider in its initial placement attempt.  Specifically, the router 

records the overall congestion for all routing iterations, the exact nets that could not 

legally be routed at the end of the attempt, and the level of congestion over each cell in 

the FPGA tile. 

 

The types of modifications made to the placement are primarily dependent on the 

amount of congestion at the end of the previous routing attempt.  If the router fails by a 

significant margin, the placer might need to increase the size of the tile in order to give 
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the router additional space to resolve the congestion.  If the router can obtain a solution 

with only one or two congested routing grid nodes, it may be possible for the inter-cell 

placer to use the same tile size, but reposition the cells to reduce the localized congestion. 

 

Another alternative that is available to ATL, in the attempt to create an 

electrically legal solution, is to increase the number of metal layers available for inter-cell 

routing.  The results produced by the routing algorithm indicate that an extra layer of 

metal can produce an electrically legal solution for a placement that incurred several 

hundred routing grid nodes of congestion in its previous routing attempt.  Unfortunately, 

the number of metal layers available for the layout of an FPGA tile is usually fixed, so 

this solution is not viable in all situations. 

 

4.6 Specialized Net Routing 

The routing algorithm developed considers the connections specified on the input 

netlist.  However, the power signals (i.e. VDD/GND) and clock signals are not included 

in the netlist and, because of that, not routed.  In order for the circuit to be functionally 

correct, these global nets must be routed.  The routing algorithm can be adapted with 

minimal effort to route the power signals, but is not well suited to define a high-quality 

clock routing since it is critical to route these nets with low skew. 

 

A typical routing structure for power and ground nets is to use thick, interleaved 

wires on the upper metal layers to carry these global signals [16].  This structure is 

displayed in Figure 24.  This configuration is most beneficial when standard cells are 
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used, since the power and ground rails run directly over the locations that require the 

signals.  The routing of the power and ground nets in the ATL application requires more 

effort than the standard cell layout style since the inter-cell placement module does not 

arrange the cells into rows.  The router requires knowledge of the interleaved 

power/ground routing structure in the upper metal layers in order to adapt the routing 

algorithm to consider these specialized nets.  These nets can be routed by first identifying 

a number of points on the top metal layer that are directly beneath the power rails and 

using these nodes as the “starting” point for the routing tree.  

 

Figure 24: Traditional Power/Ground Rail Layout  

 

Although it possible to identify similar “starting” points for clock nets on the top 

metal layer reserved for inter-cell routing, the problem is fundamentally different since it 

is important to balance the delay between the connections.  Currently, the router attempts 



 73 

to minimize wirelength for all the connections.  Additional logic is required in the routing 

algorithm to ensure that the skew in the clock net does not impact the circuit operation.  

A bias factor might help in equalizing the delay between the different clock connections.  

However, the routing algorithm might perform in an unpredictable manner since the bias 

factor would directly contradict the dominant term in the cost function.  Since the netlist 

does not contain clock connections, it is impossible to realize clock routing for the FPGA 

tile.  Therefore, this task is left to future extensions to the ATL application. 

 

4.7 Routing Results 

Ten netlists representing different types of FPGA tiles were used to test the 

success rate, overall quality, and speed of the routing algorithm.  Given that this is the 

first CAD tool developed that generates a complete layout for an FPGA tile, there is no 

commercial application that can be used as a reference point for the routing algorithm.  

An additional complication in estimating the results produced by ATL is the 

incompatibility in the input circuit file, the cell- level netlist, which was developed 

specifically for this tool.  However, since ATL performs a transistor-level layout of a 

digital logic design, it is possible to convert the netlist to a standard format, such as EDIF 

[17], that several commercial CAD tools can process.  Although a direct comparison with 

another tool cannot be made at this time, useful quantitative and qualitative assessments 

of the router’s quality can be derived from analyzing the router results.  Finally, the exact 

layout sizes obtained by FPGA companies are closely guarded information and cannot be 

used for evaluating the performance of the router. 
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The primary goal of this project is to evaluate the feasibility of an automated 

solution to the layout problem for FPGA tiles.  This goal translates to the task of defining 

quality intra-cell layouts for all the cells that can appear in a tile, deriving actual port 

positions and dimensions of the cells, and using this information to place and route these 

cells in the tile.  The most crucial aspect is to use the exact positional information from 

the intra-cell layout phase in the routing grid.  Specifically, this implies that a grid 

granularity (see section 4.3.2) used to build the routing grid is set to unity.  All the results 

presented in this section have been run using a grid granularity defined as unity. 

 

 The secondary goal is to evaluate the router’s quality by comparing both the 

number of metal layers and additional space required by the routing algorithm against 

approximate numbers for similar types of layout problems.  It should be noted that the 

algorithm always identifies an electrically legal solution given enough metal layers and a 

significant space buffer between all cells in the tile.  Therefore, the results presented in 

this section defines a solution with two numerical quantities: the number of metal layers 

required and the area increase required over the original tile size provided by the 

placement module.  All area values are expressed as a ratio.  For example, if a placement 

requires a 220 x 220 grid to successfully route, but the inter-cell placer generated a 

placement using a 200 x 200 grid, the area increase would be 
2

200
220







 = 1.21.   

 

The benchmark circuits used to test the router represent logic array blocks [18] 

containing varying amounts of configurable logic and programmable routing.  The VPR 

architecture generator [4] is the software tool that parses the high- level architectural 
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description for an FPGA tile and identifies the logical connections required to implement 

the tile.  As part of [2], Padalia created ten circuits to test the original ATL application.  

These circuits are used to test the quality of the router.  The name of each circuit 

identifies the number of 4-LUT cells contained in the cluster.  An appropriate amount of 

programmable routing is added to each tile, based on the number of lookup tables in the 

tile.  Table 4 contains pertinent information as to the number of transistors and nets in 

each of the ten benchmarks used to evaluate the quality of the router. 

Circuit # Transistors # Cells # Nets Placer Grid Size 

tile_1x4 3093 1197 836 156 x 177 

tile_2x4 3762 1365 1007 254 x 231 

tile_3x4 4359 1483 1146 296 x 310 

tile_4x4 4854 1603 1274 333 x 270 

tile_5x4 5621 1711 1435 399 x 411 

tile_6x4 6336 1853 1586 461 x 450 

tile_7x4 7023 1931 1700 514 x 477 

tile_8x4 7592 2011 1783 533 x 520 

tile_9x4 8459 2108 1908 590 x 575 

tile_10x4 9342 2245 2057 640 x 640 

Table 4: Physical Information on Benchmark Circuits  

 

An important aspect in CAD tool design is the amount of CPU time required to 

complete the operation.  As previously discussed, the length of time required to route a 

circuit is greatly affected by the stress placed on the router.  Routing the same circuit with 

one more metal layer finishes over an order of magnitude faster.  Table 5 identifies the 

low-stress and high-stress routing times for the ten circuits in our benchmark suite1.  The 

results indicate that the smaller circuits route incredibly quickly, but the algorithm takes a 

                                                 
1 Athlon 1000 MHz Processor with 256 MB of PC-100 SDRAM used for all CPU time results  
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considerable amount of time to find a solution for the larger benchmark circuits.  It seems 

clear that the algorithm is not well suited for circuits containing more than ten thousand 

transistors and will definitely not scale to designs containing hundreds of thousands of 

transistors. 

Circuit Low-Stress Routing 
(CPU s) 

High-Stress Routing 
(CPU s) 

tile_1x4 3 18 

tile_2x4 11 144 

tile_3x4 22 238 

tile_4x4 37 493 

tile_5x4 73 796 

tile_6x4 86 974 

tile_7x4 124 1357 

tile_8x4 190 2158 

tile_9x4 233 2785 

tile_10x4 306 4051 

Table 5: CPU Time Required By The Router 

 

After running the benchmark circuits with many different sets of parameters for 

the routing bias factors, cost function weighting factors, and the “directedness” of the 

algorithm, a single set that consistently produced decent results was chosen to use as the 

basis of the evaluation of the routing algorithm.  Table 6 presents the minimum additional 

area required to generate a legal routing for each of the benchmark circuits, using several 

different selections for the number of metal layers available for inter-cell routing2. 

                                                 
2 The area bloat becomes excessive when circuits above tile_3x4 are routed on 3 layers of metal 
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Circuit Metal Layers Router Area Ratio 

 3 1.124 

tile_1x4 4 1.024 

 5 1.000 

 3 1.257 

tile_2x4 4 1.089 

 5 1.018 

 3 1.335 

tile_3x4 4 1.122 

 5 1.052 

 4 1.231 

tile_4x4 5 1.105 

 6 1.034 

 4 1.265 

tile_5x4 5 1.117 

 6 1.049 

 4 1.294 

tile_6x4 5 1.144 

 6 1.055 

 4 1.319 

tile_7x4 5 1.171 

 6 1.061 

 4 1.351 

tile_8x4 5 1.190 

 6 1.069 

 4 1.377 

tile_9x4 5 1.231 

 6 1.072 

 4 1.410 

tile_10x4 5 1.262 

 6 1.078 

Table 6: Experimental Routing Results for Benchmark Circuits 
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 Two major observations can be made from the results presented in the previous 

table.  First, all circuits are fully routable in four layers of dedicated inter-cell routing 

metal.  After recognizing that two layers are devoted to intra-cell layout and that two 

metal layers are sufficient for routing power, ground, and clock nets, it can be concluded 

that the entire layout produced by ATL requires eight layers of metal.  This number is 

comparable with the number of layers required by modern VLSI processes.  Therefore, in 

this respect the router produces a feasible and quality solution.  Second, the amount of 

additional area required in order to legally route the circuit is considerable (41% for the 

largest circuit), but decreases substantially for each additional metal layer allowed to be 

used by the routing algorithm.  However, it should be noted that achieving an electrically 

legal layout in a few hours for an FPGA tile having the same complexity as modern 

FPGA devices is a substantial achievement. 

 

4.8 Summary 

In this section we described the routing portion of the Automated Transistor 

Layout CAD tool.  A description of the representation for the silicon area available for 

metal wiring was presented along with a justification of its validity.  A routing algorithm 

was developed that utilizes several different attributes of previous CAD approaches that 

generate high quality results along with many new ideas formulated using specific 

knowledge and concepts from both the VLSI and FPGA domains. 

 

The success of the ATL routing algorithm demonstrates that an automated 

approach to the transistor level layout of an FPGA is feasible.  The quality of the results 
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indicates that there is potential for using this tool to aid FPGA architects in the design and 

layout of the FPGA tile.  However, further investigation needs to be performed in order 

to accurately compare the layouts produced by ATL against other software applications 

that generate detailed transistor- level layouts for VLSI circuits. 
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5 Graphical User Interface 

The goal of the graphical editor is to provide a visualization of the entire FPGA tile 

as designed by ATL.  This includes showing the placement of blocks, the routing 

between blocks as well as the transistor layout within the blocks.  Further requirements 

include the ability to edit, save and load routing information. 

 

5.1 GUI Functionality 

5.1.1 Inter Cell Placement 

The original ATL was already capable of drawing placement.  However, the 

visualization engine was insufficient and not easily extendable to accommodate the 

additional requirements.  Therefore, the majority of the block placement visualization 

code needed to be rewritten.  Blocks are drawn using rectangles and can be distinguished 

by the different colours used.  Block placement is two-dimensional so visualizing the 

block placement is quite straightforward.  

5.1.2 Inter Cell Routing 

The amount of routing nodes used for the complete routing of an FPGA tile is 

very large and visualizing the layout is complex.  Further there are multiple layers of 

overlapping metal and so a mechanism by which this can be visualized needs to be 

defined.  The selected implementation uses a different colour for each layer of metal.  

Overlapping layers of metal are represented using transparency effects such that higher 



 81 

layers do not hide the layers beneath them.  The connections between routes and the ports 

that connect the routing to blocks is also shown. 

 

The visualization is user- interactive.  The user can select to display any subset of 

layers through keyboard input.  Routing nodes and nets can be selected and displayed in 

isolation as well – this is useful for identifying a long meandering route that can then be 

corrected.  An example of this can be seen the figure below. 

 
Figure 25: Inter-cell Routing Showing Selected Nets 
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An intuitive interface to edit routes by adding and deleting nodes is provided for 

the user.  This usage is similar to that of other layout tools in industry (for example 

MAX).  To add to a net, the user simply clicks on the net they want to extend.  That net 

will become active and a wire on the metal layer that the user clicked will be drawn from 

the selected point to where the user next clicks.  To change layers, the user simply uses 

the keyboard – the vias required for connection the different metal layers are created 

automatically by the tool. 

 

In a complex design it is very easy to create erroneous routes and it can be 

cumbersome to identify and correct simple errors.  ATL attempts to facilitate this process 

by supporting the automatic correction of certain erroneous routes.  This includes the 

automatic removal of loops and extraneous paths.  Routes that ATL cannot automatically 

resolve are identified to the user by highlighting the erroneous net. 

 

5.1.3 Intra Cell Placement 

The intra cell placement is visualized right on top of the inter cell placement.  

That is, instead of simply drawing the outline of rectangular blocks using different 

colours, the actual transistor layout of each block type is drawn.  Drawing the internal 

transistor layout and routing for a complete tile can be quite slow because of the immense 

quantity of detail.  However, when the visible area is smaller, such that only a portion of 

the tile is visible, the drawing speed becomes more bearable.  
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The inter cell placement can be toggled on and off through keyboard input.  This feature 

is available to the user throughout the CAD flow – from initial placement to the final 

routed design. 

 

5.2 Graphical Interface 

The old ATL interface has several buttons on the right side of the display.  A 

selected subset of these buttons and their associated functionalities were replicated in the 

new ATL.  The buttons that were not ported over were deemed superfluous and more 

time was dedicated to adding additional features.  This includes the ability to select, add 

and delete routing nodes. 

 

Navigating around the ATL interface is quite simple and can be accomplished 

through both the keyboard and the mouse.  The arrow keys allow the current viewport to 

be displaced while the “+” and “-“ keys zoom in and out.  This corresponds to the “U”, 

“D”, “L”, R”, “Zoom In” and “Zoom Out” buttons.  The window feature allows the user 

to select an area to zoom into.  Zoom fit instantly jumps the user back out to the initial 

viewport. 

 

The export to postscript feature was superceded by the ability to take a snapshot of 

the display to an image file.  Multiple image formats are supported, including PNG, JPG 

and GIF. 

 

Figure 26 shows the old and new interface buttons. 
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Several keyboard inputs are also supported.  A summary of the keys recognized 

include: 

 
• GUI Keyboard Input Legend: 

• A: display all layers 

• Z: display no layers 

• J: toggle display of internal transistor layout of blocks 

• [0-9]: toggle display for layer X 

• When in ADD mode: 

• d: up a layer 

• D: down a layer 

 
 
 
Figure 26: The old ATL interface vs. new 
OpenGL ATL 
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5.3 GUI Implementation 

The graphical editor is implemented using OpenGL and has been tested under 

both Windows and Linux platforms.  OpenGL is a mature graphics platform that is 

supported on multiple platforms.  It features 32-bit RGBA (red-green-blue-alpha) colour, 

which enables the visual display of the routing to be more appealing.  Further as an 

emerging standard many video cards have built- in hardware support for OpenGL which 

makes the graphics run faster. 

 

Incorporating the GL Utility Toolkit (GLUT) eliminated the need for two files 

from the ATL project, atl_win_graphics.c and atl_x11_graphics.c.  Previously, these 

were used to provide drawing functionality in Windows and Unix environments, 

respectively.  A unified file, atl_graphics.c, was added to accomplish drawing in both 

Unix and Windows environments.  This enhances code readability and maintainability 

while keeping cross platform compatibility. 
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Figure 27: Initial placement views (old vs. new) for “tile_1x4” circuit. 

 
The OpenGL view uses a double buffer system and therefore seems to be faster 

when refreshing the screen.  In the old ATL program, the redrawing of each individual 

block can be seen when the window is being redrawn.  Figure 27 shows the initial 

placement of the smallest test circuit under both the old and new ATL. 

 

5.3.1 Interface Implementation 

The existing export to Postscript button actually re-draws the placement using 

Postscript code.  Using OpenGL, it is much simpler to export an image file than to 

generate Postscript code to represent the display.  Hence, the export button was changed 
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to create an image file instead.  Using the BitMapped Graphic Library (BMGlib), the new 

ATL interface can export PNG, JPG and TIF files.   

 

In the interim report it was stated that there were problems with multiple 

sequential zoom requests.  All such problems have been resolved and zoom now 

functions as expected under all conditions. 

 

5.3.2 Inter Cell Placement Visualization Implementation 

The inter cell placement consists primarily of coloured rectangles.  Drawing all 

blocks in the cell level netlist is accomplished in O(N) time – loop over all blocks and 

draw a rectangle for each block.  This was quite simple as GLUT provides primitives for 

drawing rectangles. 

 

5.3.3 Routing Visualization Implementation 

The inter cell routing consists of an immense number of routing nodes placed 

upon a routing grid.  Each node on the routing grid can be flagged with the following 

properties: 

 
Figure 28: Routing grid flags 
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Based on these types, each node on the routing grid is divided into a 3x3 grid and 

drawn using Table 7 as a reference.  This 3x3 table shows the positions of possible 

contents inside the node.  Using bit-wise comparisons of the current node property and 

the defined properties, information can be extracted to indicate exactly which pieces of 

the node need to be drawn.  For occupied nodes on the routing grid, the centerpiece is 

always drawn.  Vias and ports are drawn within the centerpiece.  Adjacent routing nodes 

that form wires are drawn by filling in the appropriate entry as shown in Table 1.  For 

example, If all of the wires adjacent to the centerpiece are used, the picture resembles a 

cross. 

 
 
Always Empty 
 

 
TOP_WIRE 
 
 

 
Always Empty 

 
LEFT_WIRE 
 

 
CENTER PIECE 
(always drawn) 
 

 
RIGHT_WIRE 

 
Always Empty 
 
 

 
BOTTOM_WIRE 

 
Always Empty 

Table 7: Position of metal segments in a routing grid node 

 

Several problems related to the speed of the graphical editor were presented 

during the interim report and these have all been rectified.  The largest tile data set 

available can be drawn in less than a second with all the routing displayed.  This is 

considerable improvement over the minutes that the initial solution presented in the 

interim report required. 
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Because the number of routing nodes is significantly higher than the number of 

the number of blocks, an O(N) algorithm in terms of the number of used routing nodes is 

still too slow to be bearable. 

 

The main source of the incredible speed increase is caused by a major code 

overhaul to draw nets instead of drawing nodes.  This requires relatively complex 

preprocessing of the node connectivity based on the flags set on each node to create a 

new net-based data structure (DrawNet) storing only the end points of metal wires.  This 

new data structure is created by reading the routing traceback and creating a list of 

endpoints that can be identified by comparing the flags assigned to each node.  This data 

structure has a second benefit – it reduces the memory usage, as intermediary nodes do 

not have to be stored.  The memory usage concern was mentioned in the interim report 

and was successfully resolved.  Figure 29 (identical to Figure 17) shows an example of 

what information is stored in the DrawNet data structure for the routing of a 3-pin net. 

 

Because the traceback does not change, computing the endpoints once at the 

beginning and caching these coordinates makes drawing the nets orders of magnitude 

faster than visiting all visible nodes and querying their properties. 
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1 2 3 4 5 6 7 

8 9 10 11 12 Pin C 
13 14 

15 16 17 18 19 20 21 

22 Pin A 
23 

24 25 26 27 28 

29 30 31 32 33 34 35 

36 37 38 Pin B 
39 

40 41 42 

43 44 45 46 47 48 49 

 
Associated Traceback: 23à24à25à32à39àXXà25à26à27à20à13 

DrawNet Endpoints list: 23->25, 25->39,26->27,20->13 
Figure 29: Drawing procedure Based On Traceback. 

 

The modifications that a user makes to the routing are made in the graphics data 

structures.  Two data structures are updated upon either a user add or delete command  – 

an array of routing nodes that stores the properties of each node and the DrawNet 

structure.  As such, the interface requires the user to add routing nodes to an existing net 

– routing nodes that do not belong to any net cannot be added.  This simplifies the error 

recovery system considerably. 

 

When the user issues a “Validate Route” command the route traceback data 

structure is reconstructed based on the graphics structure.  This conversion process 

includes a simplistic error recovery system that can very quickly identify and remove 

some erroneous routes.  This error recovery system is very fast and does not involve an 
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actual call to re-route the entire tile.  Instead it traces the route that is displayed to the 

user by performing a depth first search starting from the source pin and searching along 

connected paths for the destination pins.  During the depth first search, loops can be 

identified and removed.  Further pins that cannot be found are flagged as a fatal error – 

the route is disconnected.  In the event that a successful conversion is possible from the 

graphics structure to the route traceback data structure, the standard route checking 

routines are invoked.  This verifies the occupancies and connectivity in a more extensive 

manner. 

 

5.3.4 Intra Cell Placement Visualization 

The internal transistor layout of each block can be quite complex and therefore 

drawing all transistors for an entire tile causes considerable slowdown to the graphics.  

This is alleviated somewhat by smartly only drawing the visible blocks, therefore in a 

zoomed in view the delay is negligible. 

 

As the intra cell placement is presented as a set of rectangles, drawing this data is 

quite straightforward.  The only minor problem resulted in the fact that the intra cell 

placement coordinate  system did not match that of the inter cell placement.  Because of 

these discrepancies in the coordinate systems, some scaling of the internal transistor 

layout must be performed.  This scaling is done on a per block basis since there is also no 

consistency with regards to the coordinate system for the different block types.  Figure 30 

shows a zoomed in view of the tile with the internal transistor layout revealed.  Figure 31 

shows the same view but the internal transistor layout is hidden. 
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Figure 30: Inter-cell Routing With Transistor Level Layout displayed 

 

Figure 31: Inter-cell Routing With Transistor Level Layout hidden 
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6 Conclusions and Future Work 

6.1 Summary and Contributions 

Current design flow processes for Field Programmable Gate Array devices require 

an extensive amount of manual effort in order to define an electrically legal layout that 

satisfies all performance constraints.  Due to escalating complexities in modern FPGA 

devices, many person-years of development time is required to develop a new 

architecture.  An additional complication experienced in the early stages of design 

process is the inaccuracies in estimating the final performance of FPGA architectures, 

since the exact timing numbers can only be extracted after the layout is completed.  Since 

decisions made at the beginning of the design cycle have a profound impact on the 

quality, performance, and routability of the architecture, the development of automated 

software tools that assist FPGA architects in quantitatively evaluating high- level 

architectural decisions is an essential step in improving the quality of FPGAs.  An 

additional benefit is that CAD tools, in combination with human intuition and experience, 

can accelerate the design cycle for FPGA architectures from several person-years to a 

few person-months. 

 

Betz et al. [4] identify three major factors that influence the performance of 

FPGA devices:  

• The quality of the CAD tools used to map circuits into an FPGA 
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• The high- level architectural decisions of the FPGA, such as the global routing 

architecture, the detailed routing architecture, and the composition of the logic 

structures inside the FPGA 

• The intrinsic quality of the transistor- level layout of the FPGA 

 

Betz develops a detailed framework for investigating the first two of these three 

factors.  VPR, Versatile Place-and-Route, contains a high-quality and highly flexible 

packer, placer, and router that position and connect the fundamental logic components 

that represent a digital design into an FPGA.  Having high-quality CAD tools that map 

circuits into the FPGA are fundamental in accurately evaluating the effect of high- level 

architectural decisions on the overall performance of the architecture.  This work points 

out that the area and delay information used in the tools to evaluate FPGA performance 

are developed using abstract models that estimate the area of the FPGA and delay 

between connections within the FPGA.  The exact numbers cannot be obtained since a 

valid transistor-level layout is not available for these architectures. 

 

Our design project is the extension of a CAD tool that performs the automated 

transistor-level design and layout of an FPGA – the unexplored factor that has a 

significant influence on the performance of FPGA devices.  The ultimate goal of the 

CAD tool, ATL, is the creation of a high-performance electrically legal layout for an 

FPGA tile defined by a high- level architectural description.  Ideally, ATL will generate a 

solution that uses a minimum amount of silicon area, has desirable timing characteristics, 
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and identify the solution in a short period of time.  FPGA architects can utilize ATL, in 

concert with VPR, to obtain a complete CAD flow for evaluating high- level architectural 

decisions on the final performance of an FPGA.  

 

We have added three important modules to ATL that increase the functionality of 

the application.  First, a set of hand-optimized layouts was developed and functionally 

verified using commercial CAD tools.  A parser was developed that converts these 

layouts into ATL’s data structures and transforms the circuit netlist to reflect the 

information about the dimensions of each cell.  Next, an inter-cell routing algorithm was 

created to define the width, position, and orientation of metal segments that electrically 

connect the terminals of the logic design, as specified by the circuit netlist.  Finally, we 

produced a graphical user interface that is capable of displaying, editing, and saving both 

layout and routing information from the two other modules. 

 

ATL is currently the only academic work that focuses on using domain specific 

knowledge to develop a transistor- level layout for an FPGA tile.  Therefore, the 

feasibility of automated solution is an important question tha t our project is attempting to 

answer.  In this paper, we have demonstrated that an automated tool can achieve 

compact, routable layouts for complex tile definitions in a few hours.  This result proves 

there is potential for using automated tool to assist in the development of modern FPGA 

architectures. 
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6.2 Future Enhancements 

Although we have demonstrated the feasibility of an automated solution, there are 

many additional considerations that are required to increase the quality and usefulness of 

ATL.  There are several important components that need to be implemented before this 

tool can produce sufficient information for a semiconductor facility to generate a mask.  

The output of ATL needs to be converted to the standard mask definition language used 

in industry, GDS-II.  This task is more complicated than a simple format translator due to 

the complex rules associated with the GDS-II standard.  However, a considerable benefit 

of developing a GDS-II translator for ATL is that the output layout could be analyzed by 

commercial simulation and timing analysis applications to (1) validate the correctness 

and (2) compare the performance of ATL against alternative CAD tools that perform 

transistor-level layout.  In order for ATL to generate layouts that can be implemented in 

silicon, the router needs to be enhanced to handle design rules involving exact distances 

instead of relying on scalable design rules.  Additionally, more complex design rules 

need to be considered in the routing algorithm in order for the layouts to be implemented 

on deep sub-micron VLSI processes. 

 

Several enhancements can be made to the routing module that would reduce the 

overall area (and potentially the minimum number of metal layers) required by the router.  

Modifications can be made to allow the router to use polysilicon for short connections 

and utilize the unused areas in the lower metal layers.  Another enhancement to the tool 

would be the ability to generate a layout that considers “directed” timing requirements 

specified in the architecture file.  For example, it is standard practice in recent FPGA 
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devices to skew the delays of the LUT inputs to increase the performance of the circuits 

implemented in FPGAs.   

 

An additional extension to this project would be the ability to allow the floor 

planning of an entire FPGA based on various configurations of primitive tiles.  This 

module would be responsible handling user specifications and the issues involved in the 

integration of various tile structures.  This feature would allow ATL and its deriva tives to 

be one step closer to generate the transistor- level layouts for complete FPGA 

architectures and produce legal mask definitions that are ready for the next phase in the 

fabrication process.   

 

These examples of potential enhancements to the ATL application are a sample of 

the rich possibilities that exist in the field of automated transistor- level layout for FPGA 

devices and shed light on the potential that ATL will have on further research.  This 

technology has the potential to have a tremendous impact on both the current and future 

design processes of FPGA devices.  This work has taken an important step to the eventual 

realization of this technology. 
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APPENDIX A: Cell Schematic and Layout Library 

The following table lists the major cell types used within the FPGA architectures 

considered in this project complete with a schematic representation and a sample layout . 

Cell 
Name 

Schematic Representation Layout Representation 

SRAM 

 

 

Buffer 

 

Flip-
Flop 
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Look-
up 

Table 

 

 

Table 8: Cell schematics and layouts 


