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ABSTRACT 
 

Automating Transistor Resizing in the Design of Field-Programmable Gate Arrays 
 

Bachelor of Applied Science and Engineering, April 2003 
Anthony Bing-Yan Chan 

Division of Engineering Science 
Faculty of Applied Science and Engineering 

University of Toronto 
 
 
 

 The manual design and layout of Field Programmable Gate Arrays (FPGAs) is a 
lengthy process which can be greatly eased through automation.  
 This research builds upon previous work conducted at the University of Toronto 
towards the creation of a tool that automatically generates FPGA layouts from an 
architectural description.  Specifically, this research modifies the transistor-level netlist 
created by that tool by resizing the transistors to improve performance as evaluated by a 
cost-function. 
 Several different functions were utilized to investigate the effects of different 
degrees of trade-off between area and speed.  Although the final results varied depending 
on the function that was implemented, there was a minimum of a 50% improvement in 
each case.  
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Chapter 1  Introduction 

1.1 MOTIVATION 

Field-programmable gate arrays (FPGAs) are highly versatile devices that can be 

implemented easy for a large number of applications.  They can also greatly reduce time-to-

market by facilitating design changes.  However, while projects utilizing FPGAs may experience 

short design periods, the same can not be said of FPGA devices themselves.  FPGAs are highly 

complex integrated circuits that require many person-hours to design. 

Such long design cycles have been the motivation behind an ongoing project at the 

University of Toronto for creating tools capable of automating the design process of an FPGA, 

thus reducing the design time.  Previous work has created a tool that takes an architectural 

description of an FPGA and creates a transistor level netlist of the device.  The size of the 

transistors described in this netlist are chosen by the previous tool with limited optimization.   

The work presented in this paper is an extension of the previous work.  The intent is to 

create a tool that will take the generated transistor-level netlist, analyze the circuit that it 

describes, and resize the transistors to optimize the described device for both area and speed. 

1.2 ORGANISATION OF THESIS 

Chapter 2 provides background information and the previous work upon which this 

paper is based.  Chapter 3 describes the theory and intended process behind the transistor 

resizing tool.  This chapter outlines the steps necessary for such a tool to perform its function 

and the methods by which these steps are executed.  Due to problems encountered when 

working with the input netlists, a few changes were made in the final implementation of the tool 

as described in Chapter 4.  This chapter also describes also describes the specific parameters 
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chosen for the tool for generating the results that are presented.  Chapter 5 presents a summary 

of the results and describes aspects of this tool that can be improved upon through future work.  

The source code for the final tool can be found on the companion CD, the contents of which 

are described in Appendix A.  
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Chapter 2 Background and Previous Work 

2.1 INTEGRATED CIRCUITS AND CMOS TRANSISTORS 

When implemented in integrated circuits (ICs), CMOS transistors generally consist of a 

polysilicon gate between two heavily doped silicon junctions which are the drain and source for 

the transistor.   In large ICs, transistors often share junctions and these junctions may or may not 

have contacts.  The different junction varieties are shown in Figure 2.1, and applies to both n-

channel and p-channel transistors. 

 
Figure 2.1  Junction Types of CMOS Transistors in ICs 

Under static conditions, the drain-to-source resistance of a transistor can be calculated 

using: 
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Where µ, Cox and Vt  are technology dependent constants.  Furthermore, Vt also varies 

depending on whether the transistor is p-channel or n-channel.  Also, S = (W/L) is the 

transistor sizing and VGS is the gate-to-source voltage.   For obvious reasons, S can not be less 

than one since L represents the smallest possible dimension.  

However, it is also useful to be able to model the transistor as a resistance during signal 

transitions.  Although there is no simple equation to do this, the resistance can be approximated 

by using the static equation multiplied by a “fudge-factor”.  A valid constant is 2.5 [4], but a 

more accurate constant can be determined through simulation and is technology dependent.. 

 In such transistors, there is also significant parasitic capacitances at each junction and 

gate.  Consequently, they can not be neglected when making such calculations.  The following 

equations [4] can be used to calculate these capacitances: 

oxgate WLCC =  

( )jswjjjj PCACC −+= 63.0  

The equation for Cj is used to determine the capacitance for both sources and drains.  Aj and Pj 

are the area and perimeter of the junction and Cj and Cj-sw are technology dependent constants. 

2.2 FPGA ARCHITECTURE 

FPGAs can be implemented in a variety of ways.  The most common method of 

implementation is through the use of SRAM cells as can be exhibited by products offered by 

Altera and Xilinx.  Alternative programming techniques include antifuses and Flash which are 

both demonstrated by the products available from Actel. 

The remainder of this paper will deal exclusively with FPGAs based on SRAM 

technology.  This is primarily because this is the technology that is the subject of the work upon 

which this paper is based. 
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The generic FPGA has a layout similar to that shown in Figure 2.2.  Such an FPGA 

consists of a ring of I/O blocks circling an array of logic blocks connected by routing lines.   

 
Figure 2.2  Generic FPGA Layout 

Although the I/O blocks are also configured by programming SRAM cells, the work 

contained in this paper focuses on the logic blocks in the array and the connections between 

them through the routing network.  Consequently, only these elements of the device need to be 

examined in the following subsections. 

2.2.1 Routing Architecture 

 The programmable elements of the routing architecture consist mainly of pass-

transistors.  One can argue that tri-state buffers are also present, but they generally consist of 

regular buffers followed by a pass-transistor. 

 There are several routing styles that can be implemented.  The style shown in Figure 2.2 

is known as an island-style routing architecture, which features routing surrounding each logic 

block.  Other styles include row-based and hierarchical [3], however island-style FPGAs were the 

subject of previous work and consequently will be the focus of this paper as well.  

I/O block 

Logic block 

Routing 
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 In such an architecture, wires run horizontally and vertically, surrounding each of the 

logic blocks of the array.  Pass-transistors are located periodically along these wires to control 

the propagation of signals through the device.  Depending on the periodicity of these pass-

transistors, wires can span a number of logic blocks before encountering another transistor.  The 

number of logic blocks that are spanned is used to characterise the length of the wires in a given 

architecture. 

2.2.2 Logic Block Architecture 

 The programmable elements of a logic block generally consist of multiplexers and look-

up-tables (LUTs), which have a similar structure to that of a multiplexer.  Both structures consist 

of a network of pass-transistors.  The difference between the two is that the SRAMs are 

connected to the gates of MUX transistors, whereas in LUTs, they are connected to the source 

node of the transistors.  Figure 2.3 shows the difference between the two. 

 
Figure 2.3  MUX vs. LUT 

 A LUT can be combined with flip-flop to form another structure known as a Basic 

Logic Element (BLE).  The presence of the flip-flop allows for the implementation of both 

combinatorial and sequential circuits.  An entire logic block can consist of one or more BLEs.  

Both the schematic of a BLE and a logic block are shown in Figure 2.4.    
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Figure 2.4  BLE and Logic Block 

2.3 TILE STRUCTURE  

In describing the architecture of an FPGA, one can make use of the repetitive nature of 

the device.  It simply consists of an array of similar logic blocks all surrounded by similar routing 

lines.  Consequently, the entire device can be fully described by one unit, or tile, of the total 

array. 

To describe an FPGA in such a manner, a few additional considerations need to be 

made.  The first is to ensure that the ports on opposite sides of the tile line up so that they are 
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connected when the tile is arrayed.  Another consideration is to ensure that routing lines are 

offset properly to ensure that they span the desired length. 

2.4 VPR AND VPR_LAYOUT 

VPR (Versatile Place and Route) is a tool developed though previous work conducted at 

the University of Toronto.  Two inputs which describe the desired FPGA are used, the netlist of 

the logic blocks and an architecture description file.  This tool then invokes a place-and-route 

engine that creates placement and routing output files and statistics. 

VPR_LAYOUT is another tool that builds upon VPR and was also developed at the 

University of Toronto.  In addition to the outputs provided by VPR, this tool also generates cell-

level and transistor-level netlists.  Each of these netlists describe a tile of the FPGA and are the 

basis of the work presented in this paper. 

2.4.1 Cell-Level Netlist 

 An FPGA is essentially comprised of buffers, SRAMs, multiplexers, LUTs, flip-flops, 

and pass-transistor switches.  Consequently, an FPGA tile can be defined by describing it in 

terms of these components, or “cells”. 

 The cell-level netlist accomplishes this by identifying the type of each cell as well as 

providing a unique identifier to each cell instance.  The following is an example of such a netlist 

produced by VPR_LAYOUT: 

# FPGA Tile cell-level netlist 
# Output by VPR_Layout 
 
 
# CELL Format: id cell_type "Name" subgroup_type group_type width height num_pins 
#              (pin_class node x_offset y_offset) (...) (...) etc for num_pins times 
 
C0 0 "1x_Buffer" 0 0 4 3 4 (5 1 0 0) (0 2 1 0) (1 8 2 1) (6 0 3 2) 
C1 0 "4x_Buffer" 0 0 6 5 4 (5 1 0 0) (0 8 0 3) (1 9 3 1) (6 0 3 4) 
C2 0 "1x_Buffer" 0 0 4 3 4 (5 1 0 0) (0 3 1 0) (1 10 2 1) (6 0 3 2) 
. 
. 
. 
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 In the work to follow, the information that will be used will be the first three parts of 

each line: cell ID, cell type, and cell name. 

2.4.2 Transistor-Level Netlist 

The transistor-level netlist begins by stating the port information.  It provides the node 

that each port is connected to and the side that each port is located on.  Ports are paired up 

using port IDs to ensure that during placement, the proper ports are lined up from one side of 

the tile to the other. 

The transistor-level netlist then describes each transistor of the FPGA tile, listing the size 

of the transistor and each node that it is connected to.  The cell information of each transistor is 

also given, including its cell ID and cell type. 

The following is an example of such a netlist: 

# FPGA Tile transistor-level netlist 
# Output by VPR_Layout 
 
 
# PORT Format: id node constraint_class 
 
# XTOR Format: id drain gate source type size cell_type cell_id subgroup_type group_type 
 
P0 133 0 L 
P1 134 48 R 
P2 133 48 L 
P3 137 24 B 
. 
. 
. 
M0 8 2 1 P 2 0 0 0 0 
M1 8 2 0 N 1 0 0 0 0 
M2 9 8 1 P 8 0 1 0 0 
M3 9 8 0 N 4 0 1 0 0 
M4 10 3 1 P 2 0 2 0 0 
. 
. 
. 
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Chapter 3  VPR_RESIZER Tool 

3.1 DESIGN FLOW 

The overall description of the resizing tool can be illustrated in Figure 3.1.  The tool 

takes the netlists generated by VPR_LAYOUT and outputs a new transistor-level netlist with 

new transistor sizes. 

 
Figure 3.1  VPR_RESIZER Design Flow 

 
 The tool begins be parsing the input netlists to extract different signal paths found in the 

FPGA.  Once these paths have been found, their respective delays are calculated.  Modifications 
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are then made on the transistor sizes according to the optimization engine and the delays are 

recalculated.  This process is repeated until the optimizer can not find a better implementation.  

A new transistor-level netlist is then generated that is simply a copy of the original transistor-

level netlist with the updated transistor sizes. 

3.2 PATH EXTRACTION 

In an FPGA, there are a number of signal paths that exist.  Some come from input 

buffers into a BLE, other output from a BLE to an output buffer.  However, the paths used by 

this tool all involve signals originating at the output of a BLE and ending at the input of another 

BLE.  The motivation behind this is that assuming both BLEs are part of a sequential circuit, 

these paths would govern the maximum usable clock frequency.  By calculating the delay of each 

of these paths, the critical path could be identified as the one with the longest delay.  By 

reducing the delay of this path, the overall speed of the device could be increased. 

As mentioned before, the netlists provide information for a single tile of an FPGA.  

Thus, on its own, the only path that the given netlists can provide are the feedback paths from 

the output of a BLE back to one of its input s (or another BLE for multi-BLE tiles).  Although 

this is useful, most paths of interest involve BLEs from different tiles.  Thus, to generate such 

paths, a “virtual” array of the tile must be created.   

Unfortunately, generating such an array results in the problem of having too many paths.  

Although calculating the delay for each of these paths would not be excessively long, doing so a 

large number of times would be computationally demanding.  The recursive nature of the 

optimizing engine would make it impractical to utilize the entire set.  Consequently, the 

additional task of reducing the set of all paths down to a representative selection is also 

necessary. 



12 

3.2.1 Extracting Paths Components 

Although one method of extracting the paths would be to generate the array of tiles and 

analyzing that array directly, such a method would require a large amount of memory to execute 

in a reasonable amount of time.  Thus, an alternative approach was taken in which most of the 

analysis was conducted by looking within a single tile prior to creating the array. 

As mentioned before, entire paths can not be extracted by looking at only a single tile 

(with the exception of the feedback paths).  Thus, prior to looking at the “virtual” array, only 

path components can be extracted.  The first is BLE2BLE, which is simply the feedback paths 

from the BLE output to any of the inputs to the BLE.  The second is BLE2OUT which is a 

path leading from the BLE output to any of the ports of the tile.  Conversely, IN2BLE is any 

path originating at a tile port and ending at any of the BLE inputs.  Lastly IN2OUT is any path 

beginning at one tile port and ending at another.  Examples of such paths can be found in 

Figure 3.2.  When finding paths, in addition to nodal and transistor information, if a path begins 

and/or ends at a tile port, the associated port information is also recorded. 

After determining these path components, longer paths can be determined by piecing 

these components together.  Obviously, feedback paths are already complete, but the rest must 

be connected to form complete paths.  This is accomplished by starting with a BLE2OUT path 

component.  When the output tile port is encountered, the port information is accessed to 

determine the identity of the connecting port of the neighbouring tile.  All IN2BLE paths 

associated with the connecting port are found and added to the previous path component.  

Together they form a complete path.  If there are any IN2OUT paths found on the connecting 

port, this process is repeated at the next port.   
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Figure 3.2  Path Components 

 

Using this process, all paths in a large array of tiles can be found in an efficient way.  The 

remaining problem is one of sorting through all the information and reducing the set of paths 

down to a manageable number. 

3.2.3 Representative Paths 

 For a general architecture, there are a number of paths of interest.  As mentioned earlier, 

one such path is the feedback path found within a single tile.  Another common path is that 

between neighbouring tiles.  For designs with multi-length wires, paths involving logic blocks 

connected to the same wire are also utilized frequently.  Paths that travel a longer distance must 
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travel through pass transistors and/or buffers.  The precise distance for this to occur would be 

dependent on the architecture.  Regardless, such paths (and even longer) should be included in 

any representative set of paths. 

3.3 DELAY CALCULATION 

One of the most accurate methods of calculating the delays for the extracted paths 

would be to use SPICE simulations.  However, implementing a SPICE engine within this tool is 

well beyond the scope and time limitations of this research.  Rather, preliminary work towards 

this goal has been completed by converting the transistor-level netlist into a SPICE netlist.  This 

netlist is not currently used, but is output by the tool for possible future use.  

Delays were instead calculated using the Elmore delay model.  This is not the most 

accurate method of calculating delays, but it is simple to implement.  Also, although it is not very 

accurate, it is effective in calculating relative delays.  Thus it should be sufficient for detecting 

relative changes as a result of transistor resizing, which is most important when implementing 

the optimizer.  

In creating the model, one should normally also consider resistances that are not directly 

on the signal path.  However, given the complex nature of the entire circuit, this model has also 

been simplified so that only the resistances of those transistors directly in the signal path are 

used. 

Figure 3.31 shows how a path is broken down into a series of  RC ladders.  Each ladder 

is terminated and a new ladder begins when the path reaches the gate of a transistor.  In this 

model, each transistor is modelled as a resistor and the capacitance at each node is determined 

by the contribution of all connecting transistors (even those not in the signal path).  Although 

                                                 
1 The figure does not depict an actual path, it is merely an example 
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the figure shows RB, this resistance could be replaced with RC depending on whether  the signal 

is transitioning from high-to-low or low-to-high. 

 
Figure 3.3  RC Ladder Approximation of Signal Path 

 
 To create this model, a number of values required calculation:  the resistance of each 

transistor during transitions and the parasitic capacitances of the gate, drain and source.  

Although transmission line effects should also be modelled for resistance and capacitive effects, 

they were excluded due to the limitations of this project.  However, such contributions are 

worth including in any future work. 

 To determine these values, the following equations were used: 
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source is beyond the scope of this paper.  Also, such a distinction would provide a marginal 

improvement at best.  Consequently, despite this approximation, the results should be accurate 

enough for the purposes of this research.   

 For an RC ladder with n RC stages, the delay of the ladder can be calculated by using the 

following equation:  

∑ ∑
= =

=
n

i

i

k
ki RC

1 1
τ  

 
Which states that the delay can be calculated by first identifying the capacitance at each node 

along the signal path and the corresponding look-back resistance from that node to the 

beginning of the RC ladder.  Take the product of these two values and the delay is the sum of 

these products.  Note that with this equation, C0 in Figure 3.3 is unused since the look-back 

resistance from that node is zero. 

Lastly, the total delay of the signal path can be calculated by taking the sum of the delays 

of the composite RC ladders: 

∑=
l

ltotal ττ  

3.4 OPTIMIZER 

As described earlier, an FPGA can be described as the combination of a small handful of 

basic cells.  Thus, if the size of one transistor for one of these cells is changed, the same change 

must be replicated in the same transistor for each instance of that cell.  Consequently, even 

though thousands of transistors are involved, the limited number of cell types greatly reduces the 

amount of freedom when adjusting the transistor sizing.  

Another point of note is that adjusting the transistor sizes is a trade-off between size and 

speed.  In general, increasing the transistor sizes will increase the speed, but at the cost of silicon 
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area.  Thus, to determine the ideal transistor sizing, a balance must be found that optimizes for 

both size and speed. 

The total size of the device is determined by summing up the sizes of all the transistors.  

In actuality, this is not the actual area of the device, but rather the area of the transistor gates.  

Despite its inaccuracy, this method of calculating the device size can be used because it reflects 

the changes made in the transistor sizes.  Since relative changes can be tracked correctly, the 

same argument for using the Elmore delay model can be made here. 

Also associated with each of the paths produced from the path extraction process is a 

weighting factor.  The weights associated with each path can be of any value within (0,1] and are 

used to optimise for some paths more than other if so desired.  These factors are used by 

multiplying the calculated delays by them to obtain weighted delays.   

The optimizer begins by first calculating the weighted delay of each of the paths as well 

as the total size of the device.  These values are then used to evaluate a cost function which is an 

increasing function of both variables.  The optimal transistor sizing is found by minimizing the 

result of this function which represents a trade-off between size and speed. 

A change is then made in the transistor sizing and the weighted delays are recalculated 

and the cost function is re-evaluated.  If an improvement is found in the cost result, the change 

in the transistor sizing is kept.  However, if there was no improvement, the resizing is undone, 

and an alternative change is attempted.  This process is repeated until a state is found in which 

no improvement can be made by any change in the transistor sizing. 

3.5 FILE OUTPUT 

Once the resizing is complete, the information is then output in a file that is identical in 

format to that of the original transistor-level netlist.  All node and cell information remains 
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unchanged and only the transistor sizes are altered.  The benefit of maintaining the same format 

enables compatibility with any ongoing work as well as ease of readability for anybody already 

familiar with the previous work. 
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Chapter 4 Final Tool and Implementation 

4.1 INPUT FILE PROPERTIES 

Prior to the work presented in this paper, the netlists generated by VPR_LAYOUT have 

not been used for any other application.  Consequently, the accuracy of these netlists have never 

been verified, which led to a number of problems when attempting to create this tool.  All the 

netlists available for use during the development of this tool featured one or more four-input 

LUTs and length four wires.  Although the following results apply to the single-LUT netlist, the 

steps presented below can be repeated and applied to any of the other available netlists.   

4.2 TOOL IMPLEMENTATION 

The following subsections describe the specific details required to implement the steps 

outlined in the previous chapter.  Any problems that were encountered are presented along with 

the solutions to work around them.  

4.2.1 Path Extraction 

The first problem that was encountered when extracting paths from the original 

transistor-level netlist was that no BLE2OUT path components could be found.  As shown in 

Figure 2.4, the output of a BLE should be connected to a feedback path as well as a path leading 

out to the routing.  However, the only connection that was described in the source netlist was 

the feedback path, resulting in the aforementioned problem.  The output node of the BLE 

should also be connected to a drive buffer, the output of which should be separated from 

routing lines by pass-transistors. 

The proper solution to this problem would be to modify VPR_LAYOUT directly to 

correct the netlist generation subroutine to properly include the missing transistors.  However, 
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for the purposes of this paper, the missing transistors have been manually added to the source 

netlist.  The inclusion of these transistors allow BLE2OUT path components to be found. 

As mentioned earlier, the architecture of the FPGA described by the files used by 

VPR_LAYOUT features length-four wires.  Thus, as seen in Figure 4.1, when constructing the 

circuits described by the transistor-level netlist, one would expect to find continuous wires that 

span four logic blocks before encountering a pass-transistor, and then a wire spanning another 

four logic blocks. 

 
Figure 4.1  Routing Structure Defined by Architecture 

Unfortunately, the second problem that was encountered in the input netlist is that one 

length-four wire was not found to connect to another length-four wire through a pass-transistor.  

Consequently, paths spanning many wire lengths could not be found.  As a result, the list of 

representative paths was limited. 

Due to the problems that were encountered and the time constraints of this project, the 

process of path selection could not be fully automated.  Instead, the path components were 

output to a file, which were then assembled manually to create the list of representative paths 

used by the optimizer.  This file also indicates the associated weighting to be used by the 

optimizer for each path.   For each entry listed in Table 4.1, four paths were created in the file.  

Two paths corresponding to the two possible transitions (high-to-low and low-to-high), and two 

going into either an inverted or non-inverted input to the BLE.  The second pair of paths can be 

Pass-Transistor Switches Length-Four Wires  
 

Logic Blocks 
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argued as being redundant.  However, their inclusion should not result in any negative impact on 

the optimizer.  Of the four types of paths listed in the table, the feedback path has already been 

illustrated in Figure 3.2, the remaining three types of paths are depicted in Figure 4.2. 

Label in File Description 

Feedback A feedback path from a BLE output to a BLE input within the 
same tile. 

Beside A path between two BLEs in neighbouring tiles, connected to 
the same wire. 

5Pass A path between two BLEs separated by five tiles, connected to 
two different wires which are connected by a pass-transistor. 

5Buff A path between two BLEs separated by five tiles, connected to 
two different wires which are connected by a drive buffer.  

Table 4.1  Paths Listed in File 

 

 

Figure 4.2  Representative Paths chosen for use in Optimiser 

4.2.2 Delay Calculation  

The transistor models used to create the SPICE netlist as well as to make the delay 
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from [5].  Due to ease of implementation, the SPICE netlist is actually created in the previous 

stage of the tool while the input netlists are being parsed.  

4.2.3 Optimisation Engine 

Changes to the transistor sizes were made by either increasing or decreasing the original 

size by 1%.  The order in which the cells were changed were multiplexer, buffer, and then pass 

transistor switches.  Although there are a number of different buffer types defined in the cell-

netlist file (differentiated by their original size), all buffers have been given the same cell id.  As a 

result, the tool currently treats all the buffers as equal and modifies them irrespective of their 

original size.  Figure 4.3 shows a detailed flow diagram of the optimiser.  To simplify the 

diagram, what has been excluded is that the tool first attempts to decrease the size of a set of 

transistors and an increase is attempted after an improvement can not be found.  Thus, the final 

optimiser effectively has double the stages as that shown in the figure. 

 
Figure 4.3  Flow Diagram of Optimiser  
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Figure 4.4  Final Design Flow 
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Several cost-functions were applied during multiple uses of the tool.  The purpose of 

using different functions was to examine the effect of optimizing with varying emphasis on size 

and speed.  For the calculated size (s) and weighted delay sum (t), each cost-function took the 

form of: 

( ) yx tstsf =,  

Different cost-functions were realised by varying the values of the exponents x and y. 

4.2.4 Final Design Flow 

As a result of the problems encountered and implementation choices, the final design 

flow differs slightly from that shown in the previous chapter.  Figure 4.4 shows the final version 

of the design flow. 

4.3 INVOKING THE TOOL 

The final tool takes the form of a command line executable.  The program requires five 

arguments (described in Table 4.1) and execution takes the following form: 

% vpr_resizer <input_filename> <output_filename> <spice_output_filename> <spice_parameter_filename> 

<path_output_filename> 

Argument Definition 

input_filename Filename of transistor-level netlist generated by 
VPR_LAYOUT 

output_filename Filename of transistor-level netlist that will be generated by 
resizer tool 

spice_output_filename Filename of SPICE netlist that will be generated by tool 

spice_parameter_filename Name of file containing the transistor model parameters for the 
SPICE netlist 

path_output_filename 
File name of list of path components to be generated by tool 
during the path extraction process.  The selected paths for the 
optimizer is generated from the information in this file. 

Table 4.2  Command Line Arguments for Tool 
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4.4 RESULTS OF TOOL 

The results of the tool will of course vary depending on the parameters and settings 

used.  The variables include the weighting of the paths and the cost-function that is used.  The 

following subsections provide analyses of the tool for different settings of these parameters.  In 

each case, seven different costs functions will be used.  Table 4.3 lists the seven functions and 

the correspond labels that will be used to refer to them in the rest of this text. 

Function tsf ⋅= 4  tsf ⋅= 3  tsf ⋅= 2  tsf ⋅=  2tsf ⋅=  3tsf ⋅=  4tsf ⋅=  

Label S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4 

Table 4.3  Cost-Functions Implemented by Tool 

4.4.1 Tool Output for Equally Weighted Paths 

Table 4.4 shows the initial results of running the tool with the seven different cost-

functions.  The final values in the table have been normalized to the initial value of each 

respective function prior to running the tool.  The table also shows the number of times that the 

loop within the optimizer was iterated2, as well as the execution time for the optimizer.  To 

further show the effects of the tool, Graph 4.1 shows the progress of the tool.  To account for 

the different runtimes for each function, the x-axis has been normalised.  

Function Final Value Iterations Execution 
Time (s) 

S4T1 0.055 655 55.479 
S3T1 0.113 672 55.219 
S2T1 0.229 673 54.408 
S1T1 0.458 711 52.926 
S1T2 0.518 231 12.518 
S1T3 0.467 279 14.570 
S1T4 0.311 447 27.539 

Table 4.4  Results of Implementing Tool without Weighting 

 
                                                 
2 By this definition, this also corresponds to the number of times a change was made to the transistor sizing.  
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Graph 4.1  Run Time Progress of Tool without Weighting 

Although there may appear to be an anomaly in the trend of the final values, this is only 

due to the different functions involved.  A better comparison can be made be comparing the 

inputs to these functions, the final area and delay values, which are presented in Table 4.5.  This 

information is also presented in Graph 4.2 and Graph 4.3.   

Function Initial Area 
(µm2) 

Initial Delay Sum 
(ns) 

Final Area 
(µm2) 

Final Delay Sum 
(ns) 

S4T1 249.233 39.292 121.922 37.935 
S3T1 249.233 39.292 121.998 37.853 
S2T1 249.233 39.292 123.851 36.487 
S1T1 249.233 39.292 128.945 34.768 
S1T2 249.233 39.292 229.568 29.476 
S1T3 249.233 39.292 339.659 27.495 
S1T4 249.233 39.292 450.065 25.316 

Table 4.5  Final Area and Delay Sum without Weighting 
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Graph 4.2  Final Area without Weighting 

 
Graph 4.3  Final Delay Sum without Weighting 

What is interesting about the results is that varying the exponent when size is the 

dominant factor does not change the final area and delay values much.  This is likely a result of 

the transistors being optimized to their minimum size.  Hence, any increased emphasis on size 

results in minor differences since the transistors sizes can not be improved upon.  This is 

verified later when the final size of the individual cell transistors is examined later on.  However, 

varying the exponent when delay is the dominant factor results in significant changes in the final 

values.  This is due to the lack of any upper limit to the transistor size, which allows the total 

area to be increased without bound in order to decrease delay.  Also of note is that the optimal 

result for some of the cost-functions is actually an increase in the total area , whereas there is an 

improvement in delay in every case .  



28 

4.4.2 Tool Output for Unevenly Weighted Paths 

 To determine the effect of weighting on the results of the tool, the paths were given a 

decreasing weight with increasing distance.  Table 4.6 shows the weights used for each of the 

paths listed in the file. 

Path Weight 
Feedback 1 

Beside 0.8 
5Pass 0.6 
5Buff 0.6 

Table 4.6  Weights Used for Each Path in File 

 In a fashion similar to that found in the previous subsection, the results of the tool are 

shown in Table 4.7 and the plot of the tool progress can be seen in Graph 4.4.  A comparison 

with the unweighted results shows that there is not much change in the results for the two sets 

of data.  As the delay component becomes more dominant in the cost-function, a larger 

(although still small) difference can be seen between the two results.  This is not surprising as 

weighting the paths only has an impact on the delay values.   

Function Final Value Iterations Execution 
Time (s) 

S4T1 0.055 658 55.720 
S3T1 0.112 675 55.369 
S2T1 0.228 675 54.989 
S1T1 0.455 709 52.565 
S1T2 0.515 250 14.120 
S1T3 0.460 271 13.429 
S1T4 0.305 439 26.428 

Table 4.7  Results of Implementing Tool with Weighting 
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Graph 4.4  Run Time Progress of Tool with Weighting 

 
The final area and delay values are shown in Table 4.8 and depicted in Graph 4.5 and 

Graph 4.6.  To properly compare this data with the unweighted results, one can only compare 

the two sets of final area values since the weighted sum of the delays will always be less than the 

unweighted sum of the delays.  A quick comparison of the two tables shows that there is very 

little difference.  Graph 4.7 explicitly shows the affect of using weighted path delays as a 

percentage change in the size.  As the numbers show, the difference is much less than 1% in 

each case. 

Function Initial Area 
(µm2) 

Initial Weighted 
Delay Sum 

(ns) 

Final Area 
(µm2) 

Final Weighted 
Delay Sum 

(ns) 
S4T1 249.233 26.461 121.912 25.432 
S3T1 249.233 26.461 121.987 25.376 
S2T1 249.233 26.461 123.962 24.390 
S1T1 249.233 26.461 129.129 23.230 
S1T2 249.233 26.461 228.961 19.815 
S1T3 249.233 26.461 338.933 18.433 
S1T4 249.233 26.461 448.936 16.973 

Table 4.8  Final Area and Delay Sum with Weighting 
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Graph 4.5  Final Area with Weighting 

 

 
Graph 4.6  Final Delay Sum with Weighting 

 
Graph 4.7  Percentage Change in Size when using Weighted Paths 

 Although the presented results do not show a significant difference when using weighted 

paths, this could be a result of the limited number of paths that were constructed for use by the 
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optimizer.  To fully investigate the effect of weighted paths, additional data should be collected 

and the optimizer should be given a larger representative paths list. 

4.4.3 Transistor Sizes by Cell using Unweighted Paths 

 Further analysis of the tool can be conducted by examining the final transistor sizes for 

each cell type.  Referring to the cell-level netlist file, the different cells that were modified are:  

three kinds of buffers (1x, 2x, & 4x), three kinds of pass transistors (regular, buffer output, BLE 

output), and multiplexers.  Furthermore, buffers are essentially CMOS inverter stages and as 

such, two transistor sizes must be specified to fully describe a buffer.  A non-inverting buffer is 

created by putting two buffers in series.  Table 4.9 shows the final results for the different 

implementations of the cost-function.   

 To better visualize the effects of the different cost-functions, the final transistors sizes 

are plotting against the different functions.  Graph 4.7 shows the changes in the buffer 

transistors and Graph 4.8 shows the multiplexer and pass-transistors.  Each curve is normalized 

to the initial value of its respective cell type.  To simplify the plots, the curves for the p-channel 

transistors of the 1x and 2x buffers have been excluded since they are identical to the n-channel 

transistor curves for the 2x and 4x buffers respectively. 

Cell Type Initial S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4 
n-ch 1.000 1.000 1.000 1.000 1.010 1.030 1.321 1.835 1x 
p-ch 2.000 1.000 1.000 1.000 1.010 1.544 2.643 3.670 
n-ch 2.000 1.000 1.000 1.000 1.010 1.544 2.643 3.670 2x 
p-ch 4.000 1.000 1.000 1.000 1.010 3.088 5.285 7.339 
n-ch 4.000 1.000 1.000 1.000 1.010 3.088 5.285 7.339 

Buffer 

4x 
p-ch 8.000 1.000 1.000 1.000 1.061 6.176 10.570 14.679 

Regular 3.339 1.000 1.000 1.000 1.106 2.453 3.994 5.714 
Buffer Out 1.920 1.000 1.000 1.000 1.000 1.703 2.945 4.428 

Pass-
Transistor 

BLE Out 2.000 1.047 1.123 1.265 1.484 2.489 3.527 4.706 
Multiplexer 1.000 1.000 1.000 1.161 1.474 2.599 3.756 5.013 

Table 4.9  Final Transistor Sizes by Cell without Weighting 
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Graph 4.8  Final Buffer Transistor Size without Weighting 
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Graph 4.9  Final Transistor Size of Non-Buffer Transistors without Weighting 



33 

 Note that with the graph of the buffer transistors, the curves converge for cost-functions 

with greater emphasis on speed.  The reason for this is that for such cost functions, the 

transistor sizes are only increased and since all buffer transistors are adjusted together, the curves 

will be identical in this region.  The difference in the curves for cost-functions with greater 

emphasis on size results from the minimum size limitation and the different initial values.  The 

reason the curves level out is because the transistor sizes can not be reduced further.  

Another interesting phenomena is that whereas most transistors are reduced to close to 

the minimum size when the cost-function emphasizes size, this is not the case for multiplexer 

and BLE output pass-transistors.  This observation is apparent in both the table and the graph.  

This suggests that these transistors have a large impact on the speed of the device and they are 

only reduced to minimum size when extreme emphasis is put on size. 

 Additional insight can be obtained by looking at the runtime changes to the transistor 

sizes.  The runtime changes of the transistor sizes for each of the cell types for three of the cost-

functions can be seen in Graph 4.10, Graph 4.11, and Graph 4.12.  The graphs show the results 

for the two extreme cases (S4T1, S1T4) and the most neutral case (S1T1).  To simplify the plots, 

the curves for the p-channel transistors of the 1x and 2x buffers have been excluded again. 
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Graph 4.10  Run Time Progress of Transistor Sizes for S4T1 without Weighting 
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Graph 4.11  Run Time Progress of Transistor Sizes for S1T1 without Weighting 
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Graph 4.12  Run Time Progress of Transistor Sizes for S1T4 without Weighting 

 These graphs can be used to verify the order (by cell type) in which the transistors are 

resized by observing the order in which the curves begin to change.  Another observation can be 

made in the last two graphs which show the interdependence of the transistor sizes.  This is 

exhibited by the continued change in the curve of one transistor type even as the next type is 

being resized.  The reason why this can not be seen in the first graph is that due to the cost-

function, the optimal for most of the transistors is the minimum value and there is no further 

room for movement.  Note that the size axis in each graph features a logarithmic scale. 

 However, the most interesting aspect of these graphs is that in each case, the size of the 

multiplexer transistors increases at first, even when optimizing primarily for area.  This suggests 

that the minimum size is not the optimal size for the multiplexer transistors when the area is less 

emphasized.  This is further shown in the second graph in which the emphasis on area is 
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reduced and the size of the multiplexer transistors is one of the few that are significantly above 

the minimum.  

4.4.4 Transistor Sizes by Cell using Weighted Paths 

 Table 4.10 shows the final transistor sizes when implementing the tool with weighted 

paths.  A direct comparison shows that the differences when weighted paths are used are 

primarily confined to the non-buffer transistors; there is only one difference among the buffer 

transistor sizes.  Consequently, only the pass-transistor and multiplexer results have been plotted 

in Graph 4.13.  Despite the differences in the values, there is no discernable change in the graph 

from that of the unweighted version.  The effect of using weighted paths is further displayed in 

Table 4.11, which shows the percentage change in the transistor sizes for non-buffer transistors.  

Given the similarities between the weighted and unweighted data, the run time plots have not 

been provided for the weighted data since they would not present any new insight 

Cell Type Initial S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4 
n-ch 1.000 1.000 1.000 1.000 1.010 1.030 1.321 1.835 1x 
p-ch 2.000 1.000 1.000 1.000 1.010 1.544 2.643 3.670 
n-ch 2.000 1.000 1.000 1.000 1.010 1.544 2.643 3.670 2x p-ch 4.000 1.000 1.000 1.000 1.010 3.088 5.285 7.339 
n-ch 4.000 1.000 1.000 1.000 1.010 3.088 5.285 7.339 

Buffer 

4x 
p-ch 8.000 1.000 1.000 1.000 1.083 6.176 10.570 14.679 

Regular 3.339 1.000 1.000 1.000 1.063 2.334 3.800 5.437 
Buffer Out 1.920 1.000 1.000 1.000 1.000 1.621 2.830 4.255 

Pass-
Transistor 

BLE Out 2.000 1.037 1.112 1.253 1.469 2.489 3.527 4.706 
Multiplexer 1.000 1.000 1.000 1.173 1.489 2.625 3.794 5.063 

Table 4.10  Final Transistor Sizes by Cell with Weighting 
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Graph 4.13  Final Transistor Size of Non-Buffer Transistors with Weighting 

 
Cell Type S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4 

Regular 0.000 0.000 0.000 -3.888 -4.851 -4.857 -4.848 
Buffer Out 0.000 0.000 0.000 0.000 -4.815 -3.905 -3.907 

Pass-
Transistor 

BLE Out 0.000 -0.980 -0.949 -1.011 0.000 0.000 0.000 
Multiplexer 0.000 0.000 1.034 1.018 1.000 1.012 0.997 
Table 4.11  Percentage Change in Non-Buffer Transistor Sizes with Weighting 

 . 
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Chapter 5 Conclusion 

5.1 FINAL RESULTS 

Although the final values of the tool listed in Error! Reference source not found. and 

Table 4.7 can not be directly compared to evaluate the quality of the cost-functions, the results 

show that the tool does improve the sizing.  Depending on the cost-function used, the results of 

the function are improved from 50% to 95%, thus showing the effectiveness of the tool.  

Furthermore, there is an improvement in speed for each function and an improvement in area 

for all but two of them. 

An analysis of the specific sizing of the transistors for each cell type reveals that as the 

emphasis on size is increased in the cost-function, the multiplexer and BLE output pass-

transistors are the last to reach minimum size.  This suggests that they contribute significantly to 

path delays relative to their size. 

In the current form, weighting the paths does not appear to have a large effect on the 

results of the tool.  Regardless of the cost-function used, the variance in the numbers between 

the weighted and unweighted results is well less than 1%.  Examining the specific transistor 

sizing yields a slightly larger difference of just less than 5% for some of the pass-transistors.   

5.2 FUTURE WORK 

One of the obvious areas of improvement is to automate the path selection process.  

Currently, the work involved in manually creating the paths is not demanding and could be easily 

automated with an additional function in the program.  The current source code actually allows 

for this and only requires that such a function be w ritten.  
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Additional work would include improving the delay calculation algorithm.  As stated 

previously, transmission line effects are not current factored in.  To implement such an ability 

would require the results from a placement engine, and optimisation would require iterations of 

the placement tool before recalculated delays and resizing.  Such work is certainly beyond the 

scope of this project, but could offer interesting results.   

The optimizer can also benefit from additional work in two respects.  The first  would be 

if an ideal cost-function could be found.  As the findings show, different functions lead to 

different output results.  Thus, one must find the most appropriate cost-function to implement 

in order to obtain relevant results.  The second way in which the optimizer may benefit would be 

the ability to better distinguish between the cells.  Currently, all buffers are treated equally, but if 

buffers of different (original) sizes were resized separately, a better result could possibly be 

found.  In fact this idea could be extended to allow the optimiser to create sub-groups of the 

existing cells to optimise with more freedom.  For example, if the multiplexers could be 

separated into different groups depending on their functions, these groups could be optimised 

separately, potentially leading to better end results. 

Although the tool can be applied in its current form, the suggestions just mentioned 

show that additional work can be performed to make this tool even more effective. 
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Appendix A CD Contents 

The CD contains all the source code for the tool.  The software used to develop this tool 

was Microsoft Visual C++ 6.0 and the associated project files are also included. 

A compiled version of the tool is included in a separate directory.  Examples of the 

input, path, and output files have also been provided to be run with the tool. 
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