

AUTOMATING TRANSISTOR RESIZING

IN THE

DESIGN OF

FIELD-PROGRAMMABLE GATE ARRAYS

By

Anthony Bing-Yan Chan

Supervisor: Jonathan Rose

April 2003

i

AUTOMATING TRANSISTOR RESIZING

IN THE

DESIGN OF

FIELD-PROGRAMMABLE GATE ARRAYS

By

Anthony Bing-Yan Chan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF BACHELOR O F APPLIED SCIENCE.

DIVISION OF ENGINEERING SCIENCE

FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO

Supervisor: Jonathan Rose

April 2003

ii

ABSTRACT

Automating Transistor Resizing in the Design of Field-Programmable Gate Arrays

Bachelor of Applied Science and Engineering, April 2003
Anthony Bing-Yan Chan

Division of Engineering Science
Faculty of Applied Science and Engineering

University of Toronto

 The manual design and layout of Field Programmable Gate Arrays (FPGAs) is a
lengthy process which can be greatly eased through automation.
 This research builds upon previous work conducted at the University of Toronto
towards the creation of a tool that automatically generates FPGA layouts from an
architectural description. Specifically, this research modifies the transistor-level netlist
created by that tool by resizing the transistors to improve performance as evaluated by a
cost-function.
 Several different functions were utilized to investigate the effects of different
degrees of trade-off between area and speed. Although the final results varied depending
on the function that was implemented, there was a minimum of a 50% improvement in
each case.

iii

ACKNOWLEDGEMENTS

Above all else, I would like to thank my supervisor Jonathan Rose whose guidance
and support made this research possible. His understanding and advice also helped to ease
and overcome problems that presented themselves along the way.

I would also like to thank Ketan Padalia whose work this research is directly based
upon. His availability and prompt replies helped to shed light during difficult situations.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION... 1

1.1 MOTIVATION...1

1.2 ORGANISATION OF THESIS ..1

CHAPTER 2 BACKGROUND AND PREVIOUS WORK......................................3

2.1 INTEGRATED CIRCUITS AND CMOS TRANSISTORS... 3

2.2 FPGA ARCHITECTURE.. 4
2.2.1 Routing Architecture .. 5
2.2.2 Logic Block Architecture.. 6

2.3 TILE STRUCTURE .. 7

2.4 VPR AND VPR_LAYOUT .. 8
2.4.1 Cell-Level Netlist ... 8
2.4.2 Transistor-Level Netlist .. 9

CHAPTER 3 VPR_RESIZER TOOL.. 10

3.1 DESIGN FLOW...10

3.2 PATH EXTRACTION...11
3.2.1 Extracting Paths Components... 12
3.2.3 Representative Paths.. 13

3.3 DELAY CALCULATION...14

3.4 OPTIMIZER ..16

3.5 FILE OUTPUT..17

CHAPTER 4 FINAL TOOL AND IMPLEMENTATION 19

4.1 INPUT FILE PROPERTIES..19

4.2 TOOL IMPLEMENTATION...19
4.2.1 Path Extraction .. 19
4.2.2 Delay Calculation .. 21
4.2.3 Optimisation Engine ... 22
4.2.4 Final Design Flow .. 24

4.3 INVOKING THE TOOL... 24

4.4 RESULTS OF TOOL .. 25

v

4.4.1 Tool Output for Equally Weighted Paths ... 25
4.4.2 Tool Output for Unevenly Weighted Paths .. 28
4.4.3 Transistor Sizes by Cell using Unweighted Paths .. 31
4.4.4 Transistor Sizes by Cell using Weighted Paths... 36

CHAPTER 5 CONCLUSION ..38

5.1 FINAL RESULTS.. 38

5.2 FUTURE WORK... 38

APPENDIX A CD CONTEN TS..40

REFERENCES .. 41

vi

LIST OF FIGURES

Figure 2.1 Junction Types of CMOS Transistors in ICs3
Figure 2.2 Generic FPGA Layout...5
Figure 2.3 MUX vs. LUT ..6
Figure 2.4 BLE and Logic Block ...7
Figure 3.1 VPR_RESIZER Design Flow ..10
Figure 3.2 Path Components...13
Figure 3.3 RC Ladder Approximation of Signal Path ..15
Figure 4.1 Routing Structure Defined by Architecture...20
Figure 4.2 Representative Paths chosen for use in Optimiser................................21
Figure 4.3 Flow Diagram of Optimiser...22
Figure 4.4 Final Design Flow................................23

vii

LIST OF GRAPHS

Graph 4.1 Run Time Progress of Tool without Weighting..26
Graph 4.2 Final Area without Weighting...27
Graph 4.3 Final Delay Sum without Weighting...27
Graph 4.4 Run Time Progress of Tool with Weighting...29
Graph 4.5 Final Area with Weighting..30
Graph 4.6 Final Delay Sum with Weighting ..30
Graph 4.7 Percentage Change in Size when using Weighted Paths................................30
Graph 4.8 Final Buffer Transistor Size without Weighting..32
Graph 4.9 Final Transistor Size of Non-Buffer Transistors without Weighting.................32
Graph 4.10 Run Time Progress of Transistor Sizes for S4T1 without Weighting34
Graph 4.11 Run Time Progress of Transistor Sizes for S1T1 without Weighting34
Graph 4.12 Run Time Progress of Transistor Sizes for S1T4 without Weighting35
Graph 4.13 Final Transistor Size of Non-Buffer Transistors with Weighting....................37

viii

LIST OF TABLES

Table 4.1 Paths Listed in File21
Table 4.2 Command Line Arguments for Tool ...24
Table 4.3 Cost-Functions Implemented by Tool...25
Table 4.4 Results of Implementing Tool without Weighting ...25
Table 4.5 Final Area and Delay Sum without Weighting................................26
Table 4.6 Weights Used for Each Path in File ...28
Table 4.7 Results of Implementing Tool with Weighting...28
Table 4.8 Final Area and Delay Sum with Weighting...29
Table 4.9 Final Transistor Sizes by Cell without Weighting ...31
Table 4.10 Final Transistor Sizes by Cell with Weighting ..36
Table 4.11 Percentage Change in Non-Buffer Transistor Sizes with Weighting.................37

1

Chapter 1 Introduction

1.1 MOTIVATION

Field-programmable gate arrays (FPGAs) are highly versatile devices that can be

implemented easy for a large number of applications. They can also greatly reduce time-to-

market by facilitating design changes. However, while projects utilizing FPGAs may experience

short design periods, the same can not be said of FPGA devices themselves. FPGAs are highly

complex integrated circuits that require many person-hours to design.

Such long design cycles have been the motivation behind an ongoing project at the

University of Toronto for creating tools capable of automating the design process of an FPGA,

thus reducing the design time. Previous work has created a tool that takes an architectural

description of an FPGA and creates a transistor level netlist of the device. The size of the

transistors described in this netlist are chosen by the previous tool with limited optimization.

The work presented in this paper is an extension of the previous work. The intent is to

create a tool that will take the generated transistor-level netlist, analyze the circuit that it

describes, and resize the transistors to optimize the described device for both area and speed.

1.2 ORGANISATION OF THESIS

Chapter 2 provides background information and the previous work upon which this

paper is based. Chapter 3 describes the theory and intended process behind the transistor

resizing tool. This chapter outlines the steps necessary for such a tool to perform its function

and the methods by which these steps are executed. Due to problems encountered when

working with the input netlists, a few changes were made in the final implementation of the tool

as described in Chapter 4. This chapter also describes also describes the specific parameters

2

chosen for the tool for generating the results that are presented. Chapter 5 presents a summary

of the results and describes aspects of this tool that can be improved upon through future work.

The source code for the final tool can be found on the companion CD, the contents of which

are described in Appendix A.

3

Chapter 2 Background and Previous Work

2.1 INTEGRATED CIRCUITS AND CMOS TRANSISTORS

When implemented in integrated circuits (ICs), CMOS transistors generally consist of a

polysilicon gate between two heavily doped silicon junctions which are the drain and source for

the transistor. In large ICs, transistors often share junctions and these junctions may or may not

have contacts. The different junction varieties are shown in Figure 2.1, and applies to both n-

channel and p-channel transistors.

Figure 2.1 Junction Types of CMOS Transistors in ICs

Under static conditions, the drain-to-source resistance of a transistor can be calculated

using:

()tGSox
DS VVSC

R
−

=
µ

1

W

3L (5/2)L
L

L

Polysilicon Gates

Unshared Junction
with Contact

Shared Junction
without Contact

Shared Junction
with Contact

4

Where µ, Cox and Vt are technology dependent constants. Furthermore, Vt also varies

depending on whether the transistor is p-channel or n-channel. Also, S = (W/L) is the

transistor sizing and VGS is the gate-to-source voltage. For obvious reasons, S can not be less

than one since L represents the smallest possible dimension.

However, it is also useful to be able to model the transistor as a resistance during signal

transitions. Although there is no simple equation to do this, the resistance can be approximated

by using the static equation multiplied by a “fudge-factor”. A valid constant is 2.5 [4], but a

more accurate constant can be determined through simulation and is technology dependent..

 In such transistors, there is also significant parasitic capacitances at each junction and

gate. Consequently, they can not be neglected when making such calculations. The following

equations [4] can be used to calculate these capacitances:

oxgate WLCC =

()jswjjjj PCACC −+= 63.0

The equation for Cj is used to determine the capacitance for both sources and drains. Aj and Pj

are the area and perimeter of the junction and Cj and Cj-sw are technology dependent constants.

2.2 FPGA ARCHITECTURE

FPGAs can be implemented in a variety of ways. The most common method of

implementation is through the use of SRAM cells as can be exhibited by products offered by

Altera and Xilinx. Alternative programming techniques include antifuses and Flash which are

both demonstrated by the products available from Actel.

The remainder of this paper will deal exclusively with FPGAs based on SRAM

technology. This is primarily because this is the technology that is the subject of the work upon

which this paper is based.

5

The generic FPGA has a layout similar to that shown in Figure 2.2. Such an FPGA

consists of a ring of I/O blocks circling an array of logic blocks connected by routing lines.

Figure 2.2 Generic FPGA Layout

Although the I/O blocks are also configured by programming SRAM cells, the work

contained in this paper focuses on the logic blocks in the array and the connections between

them through the routing network. Consequently, only these elements of the device need to be

examined in the following subsections.

2.2.1 Routing Architecture

 The programmable elements of the routing architecture consist mainly of pass-

transistors. One can argue that tri-state buffers are also present, but they generally consist of

regular buffers followed by a pass-transistor.

 There are several routing styles that can be implemented. The style shown in Figure 2.2

is known as an island-style routing architecture, which features routing surrounding each logic

block. Other styles include row-based and hierarchical [3], however island-style FPGAs were the

subject of previous work and consequently will be the focus of this paper as well.

I/O block

Logic block

Routing

6

 In such an architecture, wires run horizontally and vertically, surrounding each of the

logic blocks of the array. Pass-transistors are located periodically along these wires to control

the propagation of signals through the device. Depending on the periodicity of these pass-

transistors, wires can span a number of logic blocks before encountering another transistor. The

number of logic blocks that are spanned is used to characterise the length of the wires in a given

architecture.

2.2.2 Logic Block Architecture

 The programmable elements of a logic block generally consist of multiplexers and look-

up-tables (LUTs), which have a similar structure to that of a multiplexer. Both structures consist

of a network of pass-transistors. The difference between the two is that the SRAMs are

connected to the gates of MUX transistors, whereas in LUTs, they are connected to the source

node of the transistors. Figure 2.3 shows the difference between the two.

Figure 2.3 MUX vs. LUT

 A LUT can be combined with flip-flop to form another structure known as a Basic

Logic Element (BLE). The presence of the flip-flop allows for the implementation of both

combinatorial and sequential circuits. An entire logic block can consist of one or more BLEs.

Both the schematic of a BLE and a logic block are shown in Figure 2.4.

SRAM SRAM

SRAM

SRAM

SRAM

SRAM

Inputs

MUX LUT

Inputs

7

Figure 2.4 BLE and Logic Block

2.3 TILE STRUCTURE

In describing the architecture of an FPGA, one can make use of the repetitive nature of

the device. It simply consists of an array of similar logic blocks all surrounded by similar routing

lines. Consequently, the entire device can be fully described by one unit, or tile, of the total

array.

To describe an FPGA in such a manner, a few additional considerations need to be

made. The first is to ensure that the ports on opposite sides of the tile line up so that they are

n-Inputs
n-Input

LUT
DFF

Clock

Output

BLE

.

.

.
k

BLEs

BLE
#1

BLE
#k

Inputs

Clock

Outputs

Logic Block

MUXs

MUXs

8

connected when the tile is arrayed. Another consideration is to ensure that routing lines are

offset properly to ensure that they span the desired length.

2.4 VPR AND VPR_LAYOUT

VPR (Versatile Place and Route) is a tool developed though previous work conducted at

the University of Toronto. Two inputs which describe the desired FPGA are used, the netlist of

the logic blocks and an architecture description file. This tool then invokes a place-and-route

engine that creates placement and routing output files and statistics.

VPR_LAYOUT is another tool that builds upon VPR and was also developed at the

University of Toronto. In addition to the outputs provided by VPR, this tool also generates cell-

level and transistor-level netlists. Each of these netlists describe a tile of the FPGA and are the

basis of the work presented in this paper.

2.4.1 Cell-Level Netlist

 An FPGA is essentially comprised of buffers, SRAMs, multiplexers, LUTs, flip-flops,

and pass-transistor switches. Consequently, an FPGA tile can be defined by describing it in

terms of these components, or “cells”.

 The cell-level netlist accomplishes this by identifying the type of each cell as well as

providing a unique identifier to each cell instance. The following is an example of such a netlist

produced by VPR_LAYOUT:

FPGA Tile cell-level netlist
Output by VPR_Layout

CELL Format: id cell_type "Name" subgroup_type group_type width height num_pins
(pin_class node x_offset y_offset) (...) (...) etc for num_pins times

C0 0 "1x_Buffer" 0 0 4 3 4 (5 1 0 0) (0 2 1 0) (1 8 2 1) (6 0 3 2)
C1 0 "4x_Buffer" 0 0 6 5 4 (5 1 0 0) (0 8 0 3) (1 9 3 1) (6 0 3 4)
C2 0 "1x_Buffer" 0 0 4 3 4 (5 1 0 0) (0 3 1 0) (1 10 2 1) (6 0 3 2)
.
.
.

9

 In the work to follow, the information that will be used will be the first three parts of

each line: cell ID, cell type, and cell name.

2.4.2 Transistor-Level Netlist

The transistor-level netlist begins by stating the port information. It provides the node

that each port is connected to and the side that each port is located on. Ports are paired up

using port IDs to ensure that during placement, the proper ports are lined up from one side of

the tile to the other.

The transistor-level netlist then describes each transistor of the FPGA tile, listing the size

of the transistor and each node that it is connected to. The cell information of each transistor is

also given, including its cell ID and cell type.

The following is an example of such a netlist:

FPGA Tile transistor-level netlist
Output by VPR_Layout

PORT Format: id node constraint_class

XTOR Format: id drain gate source type size cell_type cell_id subgroup_type group_type

P0 133 0 L
P1 134 48 R
P2 133 48 L
P3 137 24 B
.
.
.
M0 8 2 1 P 2 0 0 0 0
M1 8 2 0 N 1 0 0 0 0
M2 9 8 1 P 8 0 1 0 0
M3 9 8 0 N 4 0 1 0 0
M4 10 3 1 P 2 0 2 0 0
.
.
.

10

Chapter 3 VPR_RESIZER Tool

3.1 DESIGN FLOW

The overall description of the resizing tool can be illustrated in Figure 3.1. The tool

takes the netlists generated by VPR_LAYOUT and outputs a new transistor-level netlist with

new transistor sizes.

Figure 3.1 VPR_RESIZER Design Flow

 The tool begins be parsing the input netlists to extract different signal paths found in the

FPGA. Once these paths have been found, their respective delays are calculated. Modifications

VPR_LAYOUT

Cell-Level and
Transistor-Level

Netlists

VPR_RESIZER

Extract Paths

Calculate
Delays

Optimizer

Original Cell-Level Netlist
Modified Transistor-Level

Netlist

Resize
Transistors

11

are then made on the transistor sizes according to the optimization engine and the delays are

recalculated. This process is repeated until the optimizer can not find a better implementation.

A new transistor-level netlist is then generated that is simply a copy of the original transistor-

level netlist with the updated transistor sizes.

3.2 PATH EXTRACTION

In an FPGA, there are a number of signal paths that exist. Some come from input

buffers into a BLE, other output from a BLE to an output buffer. However, the paths used by

this tool all involve signals originating at the output of a BLE and ending at the input of another

BLE. The motivation behind this is that assuming both BLEs are part of a sequential circuit,

these paths would govern the maximum usable clock frequency. By calculating the delay of each

of these paths, the critical path could be identified as the one with the longest delay. By

reducing the delay of this path, the overall speed of the device could be increased.

As mentioned before, the netlists provide information for a single tile of an FPGA.

Thus, on its own, the only path that the given netlists can provide are the feedback paths from

the output of a BLE back to one of its input s (or another BLE for multi-BLE tiles). Although

this is useful, most paths of interest involve BLEs from different tiles. Thus, to generate such

paths, a “virtual” array of the tile must be created.

Unfortunately, generating such an array results in the problem of having too many paths.

Although calculating the delay for each of these paths would not be excessively long, doing so a

large number of times would be computationally demanding. The recursive nature of the

optimizing engine would make it impractical to utilize the entire set. Consequently, the

additional task of reducing the set of all paths down to a representative selection is also

necessary.

12

3.2.1 Extracting Paths Components

Although one method of extracting the paths would be to generate the array of tiles and

analyzing that array directly, such a method would require a large amount of memory to execute

in a reasonable amount of time. Thus, an alternative approach was taken in which most of the

analysis was conducted by looking within a single tile prior to creating the array.

As mentioned before, entire paths can not be extracted by looking at only a single tile

(with the exception of the feedback paths). Thus, prior to looking at the “virtual” array, only

path components can be extracted. The first is BLE2BLE, which is simply the feedback paths

from the BLE output to any of the inputs to the BLE. The second is BLE2OUT which is a

path leading from the BLE output to any of the ports of the tile. Conversely, IN2BLE is any

path originating at a tile port and ending at any of the BLE inputs. Lastly IN2OUT is any path

beginning at one tile port and ending at another. Examples of such paths can be found in

Figure 3.2. When finding paths, in addition to nodal and transistor information, if a path begins

and/or ends at a tile port, the associated port information is also recorded.

After determining these path components, longer paths can be determined by piecing

these components together. Obviously, feedback paths are already complete, but the rest must

be connected to form complete paths. This is accomplished by starting with a BLE2OUT path

component. When the output tile port is encountered, the port information is accessed to

determine the identity of the connecting port of the neighbouring tile. All IN2BLE paths

associated with the connecting port are found and added to the previous path component.

Together they form a complete path. If there are any IN2OUT paths found on the connecting

port, this process is repeated at the next port.

13

Figure 3.2 Path Components

Using this process, all paths in a large array of tiles can be found in an efficient way. The

remaining problem is one of sorting through all the information and reducing the set of paths

down to a manageable number.

3.2.3 Representative Paths

 For a general architecture, there are a number of paths of interest. As mentioned earlier,

one such path is the feedback path found within a single tile. Another common path is that

between neighbouring tiles. For designs with multi-length wires, paths involving logic blocks

connected to the same wire are also utilized frequently. Paths that travel a longer distance must

.

.

.
k

BLEs

BLE
#k

MUXs

MUXs

Routing

IN2BLE BLE2OUT BLE2BLE

IN2OUT

BLE
#1

14

travel through pass transistors and/or buffers. The precise distance for this to occur would be

dependent on the architecture. Regardless, such paths (and even longer) should be included in

any representative set of paths.

3.3 DELAY CALCULATION

One of the most accurate methods of calculating the delays for the extracted paths

would be to use SPICE simulations. However, implementing a SPICE engine within this tool is

well beyond the scope and time limitations of this research. Rather, preliminary work towards

this goal has been completed by converting the transistor-level netlist into a SPICE netlist. This

netlist is not currently used, but is output by the tool for possible future use.

Delays were instead calculated using the Elmore delay model. This is not the most

accurate method of calculating delays, but it is simple to implement. Also, although it is not very

accurate, it is effective in calculating relative delays. Thus it should be sufficient for detecting

relative changes as a result of transistor resizing, which is most important when implementing

the optimizer.

In creating the model, one should normally also consider resistances that are not directly

on the signal path. However, given the complex nature of the entire circuit, this model has also

been simplified so that only the resistances of those transistors directly in the signal path are

used.

Figure 3.31 shows how a path is broken down into a series of RC ladders. Each ladder

is terminated and a new ladder begins when the path reaches the gate of a transistor. In this

model, each transistor is modelled as a resistor and the capacitance at each node is determined

by the contribution of all connecting transistors (even those not in the signal path). Although

1 The figure does not depict an actual path, it is merely an example

15

the figure shows RB, this resistance could be replaced with RC depending on whether the signal

is transitioning from high-to-low or low-to-high.

Figure 3.3 RC Ladder Approximation of Signal Path

 To create this model, a number of values required calculation: the resistance of each

transistor during transitions and the parasitic capacitances of the gate, drain and source.

Although transmission line effects should also be modelled for resistance and capacitive effects,

they were excluded due to the limitations of this project. However, such contributions are

worth including in any future work.

 To determine these values, the following equations were used:

()tGSox
DS VVSC

R
−

=
µ

5.2

oxgate CSLC 2=

() ()()LCSLCCC swjjsourcedrain 6363.0 2
−+==

To simplify the analysis, each drain and source were assumed to be a shared junction with

contact. Although this is not true, determining the precise junction type of each drain and

LUT

LUT
0 1 2 3

A B

C

D

a

RA RB RD

C0 C1 C2 C3

b
Ladder 1 Ladder 2

16

source is beyond the scope of this paper. Also, such a distinction would provide a marginal

improvement at best. Consequently, despite this approximation, the results should be accurate

enough for the purposes of this research.

 For an RC ladder with n RC stages, the delay of the ladder can be calculated by using the

following equation:

∑ ∑
= =

=
n

i

i

k
ki RC

1 1
τ

Which states that the delay can be calculated by first identifying the capacitance at each node

along the signal path and the corresponding look-back resistance from that node to the

beginning of the RC ladder. Take the product of these two values and the delay is the sum of

these products. Note that with this equation, C0 in Figure 3.3 is unused since the look-back

resistance from that node is zero.

Lastly, the total delay of the signal path can be calculated by taking the sum of the delays

of the composite RC ladders:

∑=
l

ltotal ττ

3.4 OPTIMIZER

As described earlier, an FPGA can be described as the combination of a small handful of

basic cells. Thus, if the size of one transistor for one of these cells is changed, the same change

must be replicated in the same transistor for each instance of that cell. Consequently, even

though thousands of transistors are involved, the limited number of cell types greatly reduces the

amount of freedom when adjusting the transistor sizing.

Another point of note is that adjusting the transistor sizes is a trade-off between size and

speed. In general, increasing the transistor sizes will increase the speed, but at the cost of silicon

17

area. Thus, to determine the ideal transistor sizing, a balance must be found that optimizes for

both size and speed.

The total size of the device is determined by summing up the sizes of all the transistors.

In actuality, this is not the actual area of the device, but rather the area of the transistor gates.

Despite its inaccuracy, this method of calculating the device size can be used because it reflects

the changes made in the transistor sizes. Since relative changes can be tracked correctly, the

same argument for using the Elmore delay model can be made here.

Also associated with each of the paths produced from the path extraction process is a

weighting factor. The weights associated with each path can be of any value within (0,1] and are

used to optimise for some paths more than other if so desired. These factors are used by

multiplying the calculated delays by them to obtain weighted delays.

The optimizer begins by first calculating the weighted delay of each of the paths as well

as the total size of the device. These values are then used to evaluate a cost function which is an

increasing function of both variables. The optimal transistor sizing is found by minimizing the

result of this function which represents a trade-off between size and speed.

A change is then made in the transistor sizing and the weighted delays are recalculated

and the cost function is re-evaluated. If an improvement is found in the cost result, the change

in the transistor sizing is kept. However, if there was no improvement, the resizing is undone,

and an alternative change is attempted. This process is repeated until a state is found in which

no improvement can be made by any change in the transistor sizing.

3.5 FILE OUTPUT

Once the resizing is complete, the information is then output in a file that is identical in

format to that of the original transistor-level netlist. All node and cell information remains

18

unchanged and only the transistor sizes are altered. The benefit of maintaining the same format

enables compatibility with any ongoing work as well as ease of readability for anybody already

familiar with the previous work.

19

Chapter 4 Final Tool and Implementation

4.1 INPUT FILE PROPERTIES

Prior to the work presented in this paper, the netlists generated by VPR_LAYOUT have

not been used for any other application. Consequently, the accuracy of these netlists have never

been verified, which led to a number of problems when attempting to create this tool. All the

netlists available for use during the development of this tool featured one or more four-input

LUTs and length four wires. Although the following results apply to the single-LUT netlist, the

steps presented below can be repeated and applied to any of the other available netlists.

4.2 TOOL IMPLEMENTATION

The following subsections describe the specific details required to implement the steps

outlined in the previous chapter. Any problems that were encountered are presented along with

the solutions to work around them.

4.2.1 Path Extraction

The first problem that was encountered when extracting paths from the original

transistor-level netlist was that no BLE2OUT path components could be found. As shown in

Figure 2.4, the output of a BLE should be connected to a feedback path as well as a path leading

out to the routing. However, the only connection that was described in the source netlist was

the feedback path, resulting in the aforementioned problem. The output node of the BLE

should also be connected to a drive buffer, the output of which should be separated from

routing lines by pass-transistors.

The proper solution to this problem would be to modify VPR_LAYOUT directly to

correct the netlist generation subroutine to properly include the missing transistors. However,

20

for the purposes of this paper, the missing transistors have been manually added to the source

netlist. The inclusion of these transistors allow BLE2OUT path components to be found.

As mentioned earlier, the architecture of the FPGA described by the files used by

VPR_LAYOUT features length-four wires. Thus, as seen in Figure 4.1, when constructing the

circuits described by the transistor-level netlist, one would expect to find continuous wires that

span four logic blocks before encountering a pass-transistor, and then a wire spanning another

four logic blocks.

Figure 4.1 Routing Structure Defined by Architecture

Unfortunately, the second problem that was encountered in the input netlist is that one

length-four wire was not found to connect to another length-four wire through a pass-transistor.

Consequently, paths spanning many wire lengths could not be found. As a result, the list of

representative paths was limited.

Due to the problems that were encountered and the time constraints of this project, the

process of path selection could not be fully automated. Instead, the path components were

output to a file, which were then assembled manually to create the list of representative paths

used by the optimizer. This file also indicates the associated weighting to be used by the

optimizer for each path. For each entry listed in Table 4.1, four paths were created in the file.

Two paths corresponding to the two possible transitions (high-to-low and low-to-high), and two

going into either an inverted or non-inverted input to the BLE. The second pair of paths can be

Pass-Transistor Switches Length-Four Wires

Logic Blocks

21

argued as being redundant. However, their inclusion should not result in any negative impact on

the optimizer. Of the four types of paths listed in the table, the feedback path has already been

illustrated in Figure 3.2, the remaining three types of paths are depicted in Figure 4.2.

Label in File Description

Feedback A feedback path from a BLE output to a BLE input within the
same tile.

Beside A path between two BLEs in neighbouring tiles, connected to
the same wire.

5Pass A path between two BLEs separated by five tiles, connected to
two different wires which are connected by a pass-transistor.

5Buff A path between two BLEs separated by five tiles, connected to
two different wires which are connected by a drive buffer.

Table 4.1 Paths Listed in File

Figure 4.2 Representative Paths chosen for use in Optimiser

4.2.2 Delay Calculation

The transistor models used to create the SPICE netlist as well as to make the delay

calculations were based on the 0.25µm process. The values of the parameters were obtained

Logic
Block

(Source)

Logic
Block

(Destination)

Logic
Block

(Source)

Logic
Block

Logic
Block

Logic
Block

Logic
Block

(Source)

Logic
Block

Logic
Block

Logic
Block

Beside

5Pass

5Buff

Logic
Block

(Destination)

Logic
Block

(Destination)

22

from [5]. Due to ease of implementation, the SPICE netlist is actually created in the previous

stage of the tool while the input netlists are being parsed.

4.2.3 Optimisation Engine

Changes to the transistor sizes were made by either increasing or decreasing the original

size by 1%. The order in which the cells were changed were multiplexer, buffer, and then pass

transistor switches. Although there are a number of different buffer types defined in the cell-

netlist file (differentiated by their original size), all buffers have been given the same cell id. As a

result, the tool currently treats all the buffers as equal and modifies them irrespective of their

original size. Figure 4.3 shows a detailed flow diagram of the optimiser. To simplify the

diagram, what has been excluded is that the tool first attempts to decrease the size of a set of

transistors and an increase is attempted after an improvement can not be found. Thus, the final

optimiser effectively has double the stages as that shown in the figure.

Figure 4.3 Flow Diagram of Optimiser

Optimum Size
Values

Undo Previous Resize
Resize Buffer Transistors
Reevaluate Cost-Function

Resize Multiplexer Transistors
Reevaluate Cost-Function

Undo Previous Resize
Resize Pass-Transistors

Reevaluate Cost-Function

No Improvement

No Improvement

No Improvement

Improvement

Improvement

Representative
Paths File

23

Figure 4.4 Final Design Flow

VPR_LAYOUT

Cell-Level and
Transistor-

Level Netlists

VPR_RESIZER

Extract Paths

Original Cell-Level Netlist
Modified Transistor-Level

Netlist

Calculate
Delays

Optimizer

Resize
Transistors

Path Components

Manual
Manipulation

SPICE Netlist

Representative
Paths

24

Several cost-functions were applied during multiple uses of the tool. The purpose of

using different functions was to examine the effect of optimizing with varying emphasis on size

and speed. For the calculated size (s) and weighted delay sum (t), each cost-function took the

form of:

() yx tstsf =,

Different cost-functions were realised by varying the values of the exponents x and y.

4.2.4 Final Design Flow

As a result of the problems encountered and implementation choices, the final design

flow differs slightly from that shown in the previous chapter. Figure 4.4 shows the final version

of the design flow.

4.3 INVOKING THE TOOL

The final tool takes the form of a command line executable. The program requires five

arguments (described in Table 4.1) and execution takes the following form:

% vpr_resizer <input_filename> <output_filename> <spice_output_filename> <spice_parameter_filename>

<path_output_filename>

Argument Definition

input_filename Filename of transistor-level netlist generated by
VPR_LAYOUT

output_filename Filename of transistor-level netlist that will be generated by
resizer tool

spice_output_filename Filename of SPICE netlist that will be generated by tool

spice_parameter_filename Name of file containing the transistor model parameters for the
SPICE netlist

path_output_filename
File name of list of path components to be generated by tool
during the path extraction process. The selected paths for the
optimizer is generated from the information in this file.

Table 4.2 Command Line Arguments for Tool

25

4.4 RESULTS OF TOOL

The results of the tool will of course vary depending on the parameters and settings

used. The variables include the weighting of the paths and the cost-function that is used. The

following subsections provide analyses of the tool for different settings of these parameters. In

each case, seven different costs functions will be used. Table 4.3 lists the seven functions and

the correspond labels that will be used to refer to them in the rest of this text.

Function tsf ⋅= 4 tsf ⋅= 3 tsf ⋅= 2 tsf ⋅= 2tsf ⋅= 3tsf ⋅= 4tsf ⋅=

Label S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4

Table 4.3 Cost-Functions Implemented by Tool

4.4.1 Tool Output for Equally Weighted Paths

Table 4.4 shows the initial results of running the tool with the seven different cost-

functions. The final values in the table have been normalized to the initial value of each

respective function prior to running the tool. The table also shows the number of times that the

loop within the optimizer was iterated2, as well as the execution time for the optimizer. To

further show the effects of the tool, Graph 4.1 shows the progress of the tool. To account for

the different runtimes for each function, the x-axis has been normalised.

Function Final Value Iterations Execution
Time (s)

S4T1 0.055 655 55.479
S3T1 0.113 672 55.219
S2T1 0.229 673 54.408
S1T1 0.458 711 52.926
S1T2 0.518 231 12.518
S1T3 0.467 279 14.570
S1T4 0.311 447 27.539

Table 4.4 Results of Implementing Tool without Weighting

2 By this definition, this also corresponds to the number of times a change was made to the transistor sizing.

26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Run Time

N
or

m
al

iz
ed

 F
un

ct
io

n
V

al
ue

 .

 .

S4T1
S3T1
S2T1
S1T1
S1T2
S1T3
S1T4

Graph 4.1 Run Time Progress of Tool without Weighting

Although there may appear to be an anomaly in the trend of the final values, this is only

due to the different functions involved. A better comparison can be made be comparing the

inputs to these functions, the final area and delay values, which are presented in Table 4.5. This

information is also presented in Graph 4.2 and Graph 4.3.

Function Initial Area
(µm2)

Initial Delay Sum
(ns)

Final Area
(µm2)

Final Delay Sum
(ns)

S4T1 249.233 39.292 121.922 37.935
S3T1 249.233 39.292 121.998 37.853
S2T1 249.233 39.292 123.851 36.487
S1T1 249.233 39.292 128.945 34.768
S1T2 249.233 39.292 229.568 29.476
S1T3 249.233 39.292 339.659 27.495
S1T4 249.233 39.292 450.065 25.316

Table 4.5 Final Area and Delay Sum without Weighting

27

Graph 4.2 Final Area without Weighting

Graph 4.3 Final Delay Sum without Weighting

What is interesting about the results is that varying the exponent when size is the

dominant factor does not change the final area and delay values much. This is likely a result of

the transistors being optimized to their minimum size. Hence, any increased emphasis on size

results in minor differences since the transistors sizes can not be improved upon. This is

verified later when the final size of the individual cell transistors is examined later on. However,

varying the exponent when delay is the dominant factor results in significant changes in the final

values. This is due to the lack of any upper limit to the transistor size, which allows the total

area to be increased without bound in order to decrease delay. Also of note is that the optimal

result for some of the cost-functions is actually an increase in the total area , whereas there is an

improvement in delay in every case .

28

4.4.2 Tool Output for Unevenly Weighted Paths

 To determine the effect of weighting on the results of the tool, the paths were given a

decreasing weight with increasing distance. Table 4.6 shows the weights used for each of the

paths listed in the file.

Path Weight
Feedback 1

Beside 0.8
5Pass 0.6
5Buff 0.6

Table 4.6 Weights Used for Each Path in File

 In a fashion similar to that found in the previous subsection, the results of the tool are

shown in Table 4.7 and the plot of the tool progress can be seen in Graph 4.4. A comparison

with the unweighted results shows that there is not much change in the results for the two sets

of data. As the delay component becomes more dominant in the cost-function, a larger

(although still small) difference can be seen between the two results. This is not surprising as

weighting the paths only has an impact on the delay values.

Function Final Value Iterations Execution
Time (s)

S4T1 0.055 658 55.720
S3T1 0.112 675 55.369
S2T1 0.228 675 54.989
S1T1 0.455 709 52.565
S1T2 0.515 250 14.120
S1T3 0.460 271 13.429
S1T4 0.305 439 26.428

Table 4.7 Results of Implementing Tool with Weighting

29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Run Time

N
o

rm
al

iz
ed

 F
u

n
ct

io
n

 V
al

u
e

 .

.

S4T1
S3T1
S2T1

S1T1
S1T2
S1T3

S1T4

Graph 4.4 Run Time Progress of Tool with Weighting

The final area and delay values are shown in Table 4.8 and depicted in Graph 4.5 and

Graph 4.6. To properly compare this data with the unweighted results, one can only compare

the two sets of final area values since the weighted sum of the delays will always be less than the

unweighted sum of the delays. A quick comparison of the two tables shows that there is very

little difference. Graph 4.7 explicitly shows the affect of using weighted path delays as a

percentage change in the size. As the numbers show, the difference is much less than 1% in

each case.

Function Initial Area
(µm2)

Initial Weighted
Delay Sum

(ns)

Final Area
(µm2)

Final Weighted
Delay Sum

(ns)
S4T1 249.233 26.461 121.912 25.432
S3T1 249.233 26.461 121.987 25.376
S2T1 249.233 26.461 123.962 24.390
S1T1 249.233 26.461 129.129 23.230
S1T2 249.233 26.461 228.961 19.815
S1T3 249.233 26.461 338.933 18.433
S1T4 249.233 26.461 448.936 16.973

Table 4.8 Final Area and Delay Sum with Weighting

30

Graph 4.5 Final Area with Weighting

Graph 4.6 Final Delay Sum with Weighting

Graph 4.7 Percentage Change in Size when using Weighted Paths

 Although the presented results do not show a significant difference when using weighted

paths, this could be a result of the limited number of paths that were constructed for use by the

31

optimizer. To fully investigate the effect of weighted paths, additional data should be collected

and the optimizer should be given a larger representative paths list.

4.4.3 Transistor Sizes by Cell using Unweighted Paths

 Further analysis of the tool can be conducted by examining the final transistor sizes for

each cell type. Referring to the cell-level netlist file, the different cells that were modified are:

three kinds of buffers (1x, 2x, & 4x), three kinds of pass transistors (regular, buffer output, BLE

output), and multiplexers. Furthermore, buffers are essentially CMOS inverter stages and as

such, two transistor sizes must be specified to fully describe a buffer. A non-inverting buffer is

created by putting two buffers in series. Table 4.9 shows the final results for the different

implementations of the cost-function.

 To better visualize the effects of the different cost-functions, the final transistors sizes

are plotting against the different functions. Graph 4.7 shows the changes in the buffer

transistors and Graph 4.8 shows the multiplexer and pass-transistors. Each curve is normalized

to the initial value of its respective cell type. To simplify the plots, the curves for the p-channel

transistors of the 1x and 2x buffers have been excluded since they are identical to the n-channel

transistor curves for the 2x and 4x buffers respectively.

Cell Type Initial S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4
n-ch 1.000 1.000 1.000 1.000 1.010 1.030 1.321 1.835 1x
p-ch 2.000 1.000 1.000 1.000 1.010 1.544 2.643 3.670
n-ch 2.000 1.000 1.000 1.000 1.010 1.544 2.643 3.670 2x
p-ch 4.000 1.000 1.000 1.000 1.010 3.088 5.285 7.339
n-ch 4.000 1.000 1.000 1.000 1.010 3.088 5.285 7.339

Buffer

4x
p-ch 8.000 1.000 1.000 1.000 1.061 6.176 10.570 14.679

Regular 3.339 1.000 1.000 1.000 1.106 2.453 3.994 5.714
Buffer Out 1.920 1.000 1.000 1.000 1.000 1.703 2.945 4.428

Pass-
Transistor

BLE Out 2.000 1.047 1.123 1.265 1.484 2.489 3.527 4.706
Multiplexer 1.000 1.000 1.000 1.161 1.474 2.599 3.756 5.013

Table 4.9 Final Transistor Sizes by Cell without Weighting

32

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4

Cost-Function

N
o

rm
al

iz
ed

 T
ra

n
si

st
o

r
S

iz
e

1x Buffer n-ch

2x Buffer n-ch
4x Buffer n-ch

4x Buffer p-ch

Graph 4.8 Final Buffer Transistor Size without Weighting

0.000

1.000

2.000

3.000

4.000

5.000

6.000

S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4

Cost-Function

N
o

rm
al

iz
ed

 T
ra

n
si

st
o

r
S

iz
e

 .

Regular Pass-Trans

Buffer Out Pass-Trans
BLE Out Pass-Trans
Multiplexer

Graph 4.9 Final Transistor Size of Non-Buffer Transistors without Weighting

33

 Note that with the graph of the buffer transistors, the curves converge for cost-functions

with greater emphasis on speed. The reason for this is that for such cost functions, the

transistor sizes are only increased and since all buffer transistors are adjusted together, the curves

will be identical in this region. The difference in the curves for cost-functions with greater

emphasis on size results from the minimum size limitation and the different initial values. The

reason the curves level out is because the transistor sizes can not be reduced further.

Another interesting phenomena is that whereas most transistors are reduced to close to

the minimum size when the cost-function emphasizes size, this is not the case for multiplexer

and BLE output pass-transistors. This observation is apparent in both the table and the graph.

This suggests that these transistors have a large impact on the speed of the device and they are

only reduced to minimum size when extreme emphasis is put on size.

 Additional insight can be obtained by looking at the runtime changes to the transistor

sizes. The runtime changes of the transistor sizes for each of the cell types for three of the cost-

functions can be seen in Graph 4.10, Graph 4.11, and Graph 4.12. The graphs show the results

for the two extreme cases (S4T1, S1T4) and the most neutral case (S1T1). To simplify the plots,

the curves for the p-channel transistors of the 1x and 2x buffers have been excluded again.

34

1

10

0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000

T
ra

n
si

st
o

r
S

iz
e

1x Buffer n-ch

2x Buffer n-ch
4x Buffer n-ch

4x Buffer p-ch
Regular Pass-Trans

Buffer Out Pass-Trans

BLE Out Pass-Trans
Multiplexer

Graph 4.10 Run Time Progress of Transistor Sizes for S4T1 without Weighting

1

10

0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000

T
ra

n
si

st
o

r
S

iz
e

1x Buffer n-ch

2x Buffer n-ch
4x Buffer n-ch

4x Buffer p-ch

Regular Pass-Trans
Buffer Out Pass-Trans

BLE Out Pass-Trans
Multiplexer

Graph 4.11 Run Time Progress of Transistor Sizes for S1T1 without Weighting

35

1

10

100

0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000

T
ra

n
si

st
o

r
S

iz
e

1x Buffer n-ch

2x Buffer n-ch
4x Buffer n-ch

4x Buffer p-ch

Regular Pass-Trans
Buffer Out Pass-Trans

BLE Out Pass-Trans
Multiplexer

Graph 4.12 Run Time Progress of Transistor Sizes for S1T4 without Weighting

 These graphs can be used to verify the order (by cell type) in which the transistors are

resized by observing the order in which the curves begin to change. Another observation can be

made in the last two graphs which show the interdependence of the transistor sizes. This is

exhibited by the continued change in the curve of one transistor type even as the next type is

being resized. The reason why this can not be seen in the first graph is that due to the cost-

function, the optimal for most of the transistors is the minimum value and there is no further

room for movement. Note that the size axis in each graph features a logarithmic scale.

 However, the most interesting aspect of these graphs is that in each case, the size of the

multiplexer transistors increases at first, even when optimizing primarily for area. This suggests

that the minimum size is not the optimal size for the multiplexer transistors when the area is less

emphasized. This is further shown in the second graph in which the emphasis on area is

36

reduced and the size of the multiplexer transistors is one of the few that are significantly above

the minimum.

4.4.4 Transistor Sizes by Cell using Weighted Paths

 Table 4.10 shows the final transistor sizes when implementing the tool with weighted

paths. A direct comparison shows that the differences when weighted paths are used are

primarily confined to the non-buffer transistors; there is only one difference among the buffer

transistor sizes. Consequently, only the pass-transistor and multiplexer results have been plotted

in Graph 4.13. Despite the differences in the values, there is no discernable change in the graph

from that of the unweighted version. The effect of using weighted paths is further displayed in

Table 4.11, which shows the percentage change in the transistor sizes for non-buffer transistors.

Given the similarities between the weighted and unweighted data, the run time plots have not

been provided for the weighted data since they would not present any new insight

Cell Type Initial S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4
n-ch 1.000 1.000 1.000 1.000 1.010 1.030 1.321 1.835 1x
p-ch 2.000 1.000 1.000 1.000 1.010 1.544 2.643 3.670
n-ch 2.000 1.000 1.000 1.000 1.010 1.544 2.643 3.670 2x p-ch 4.000 1.000 1.000 1.000 1.010 3.088 5.285 7.339
n-ch 4.000 1.000 1.000 1.000 1.010 3.088 5.285 7.339

Buffer

4x
p-ch 8.000 1.000 1.000 1.000 1.083 6.176 10.570 14.679

Regular 3.339 1.000 1.000 1.000 1.063 2.334 3.800 5.437
Buffer Out 1.920 1.000 1.000 1.000 1.000 1.621 2.830 4.255

Pass-
Transistor

BLE Out 2.000 1.037 1.112 1.253 1.469 2.489 3.527 4.706
Multiplexer 1.000 1.000 1.000 1.173 1.489 2.625 3.794 5.063

Table 4.10 Final Transistor Sizes by Cell with Weighting

37

0.000

1.000

2.000

3.000

4.000

5.000

6.000

S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4

Cost-Function

N
o

rm
al

iz
ed

 T
ra

n
si

st
o

r
S

iz
e

 .

Regular Pass-Trans
Buffer Out Pass-Trans
BLE Out Pass-Trans
Multiplexer

Graph 4.13 Final Transistor Size of Non-Buffer Transistors with Weighting

Cell Type S4T1 S3T1 S2T1 S1T1 S1T2 S1T3 S1T4

Regular 0.000 0.000 0.000 -3.888 -4.851 -4.857 -4.848
Buffer Out 0.000 0.000 0.000 0.000 -4.815 -3.905 -3.907

Pass-
Transistor

BLE Out 0.000 -0.980 -0.949 -1.011 0.000 0.000 0.000
Multiplexer 0.000 0.000 1.034 1.018 1.000 1.012 0.997
Table 4.11 Percentage Change in Non-Buffer Transistor Sizes with Weighting

 .

38

Chapter 5 Conclusion

5.1 FINAL RESULTS

Although the final values of the tool listed in Error! Reference source not found. and

Table 4.7 can not be directly compared to evaluate the quality of the cost-functions, the results

show that the tool does improve the sizing. Depending on the cost-function used, the results of

the function are improved from 50% to 95%, thus showing the effectiveness of the tool.

Furthermore, there is an improvement in speed for each function and an improvement in area

for all but two of them.

An analysis of the specific sizing of the transistors for each cell type reveals that as the

emphasis on size is increased in the cost-function, the multiplexer and BLE output pass-

transistors are the last to reach minimum size. This suggests that they contribute significantly to

path delays relative to their size.

In the current form, weighting the paths does not appear to have a large effect on the

results of the tool. Regardless of the cost-function used, the variance in the numbers between

the weighted and unweighted results is well less than 1%. Examining the specific transistor

sizing yields a slightly larger difference of just less than 5% for some of the pass-transistors.

5.2 FUTURE WORK

One of the obvious areas of improvement is to automate the path selection process.

Currently, the work involved in manually creating the paths is not demanding and could be easily

automated with an additional function in the program. The current source code actually allows

for this and only requires that such a function be w ritten.

39

Additional work would include improving the delay calculation algorithm. As stated

previously, transmission line effects are not current factored in. To implement such an ability

would require the results from a placement engine, and optimisation would require iterations of

the placement tool before recalculated delays and resizing. Such work is certainly beyond the

scope of this project, but could offer interesting results.

The optimizer can also benefit from additional work in two respects. The first would be

if an ideal cost-function could be found. As the findings show, different functions lead to

different output results. Thus, one must find the most appropriate cost-function to implement

in order to obtain relevant results. The second way in which the optimizer may benefit would be

the ability to better distinguish between the cells. Currently, all buffers are treated equally, but if

buffers of different (original) sizes were resized separately, a better result could possibly be

found. In fact this idea could be extended to allow the optimiser to create sub-groups of the

existing cells to optimise with more freedom. For example, if the multiplexers could be

separated into different groups depending on their functions, these groups could be optimised

separately, potentially leading to better end results.

Although the tool can be applied in its current form, the suggestions just mentioned

show that additional work can be performed to make this tool even more effective.

40

Appendix A CD Contents

The CD contains all the source code for the tool. The software used to develop this tool

was Microsoft Visual C++ 6.0 and the associated project files are also included.

A compiled version of the tool is included in a separate directory. Examples of the

input, path, and output files have also been provided to be run with the tool.

41

References

[1] Padalia, K.. Automatic Transistor-Level Design and Layout Placement of FPGA Logic and

Routing from an Architectural Specification. Bachelor’s Thesis. University of Toronto,

2001.

[2] Fung, R.. Optimization of Transistor-Level Floorplans for Field-Programmable Gate Arrays.

Bachelor’s Thesis. University of Toronto, 2002.

[3] Betz, V., et al. Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic

Publishers: Boston, 1999.

[4] Martin, K.. Digital Integrated Circuit Design. Oxford University Press: New York, 2000.

[5] Martin, K. “Spice Parameters for a 0.25um Process.” Online posting. 13 January 2003

<http://www.eecg.toronto.edu/~martin/nobots/courses/Hspice025.html>

